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Preface
Being	a	data	scientist	in	the	tech	industry	is	one	of	the	most	rewarding	careers	on	the	planet	today.	I	went
and	studied	actual	job	descriptions	for	data	scientist	roles	at	tech	companies	and	I	distilled	those
requirements	down	into	the	topics	that	you'll	see	in	this	course.

Hands-On	Data	Science	and	Python	Machine	Learning	is	really	comprehensive.	We'll	start	with	a	crash
course	on	Python	and	do	a	review	of	some	basic	statistics	and	probability,	but	then	we're	going	to	dive
right	into	over	60	topics	in	data	mining	and	machine	learning.	That	includes	things	such	as	Bayes'
theorem,	clustering,	decision	trees,	regression	analysis,	experimental	design;	we'll	look	at	them	all.	Some
of	these	topics	are	really	fun.

We're	going	to	develop	an	actual	movie	recommendation	system	using	actual	user	movie	rating	data.
We're	going	to	create	a	search	engine	that	actually	works	for	Wikipedia	data.	We're	going	to	build	a	spam
classifier	that	can	correctly	classify	spam	and	nonspam	emails	in	your	email	account,	and	we	also	have	a
whole	section	on	scaling	this	work	up	to	a	cluster	that	runs	on	big	data	using	Apache	Spark.

If	you're	a	software	developer	or	programmer	looking	to	transition	into	a	career	in	data	science,	this
course	will	teach	you	the	hottest	skills	without	all	the	mathematical	notation	and	pretense	that	comes	along
with	these	topics.	We're	just	going	to	explain	these	concepts	and	show	you	some	Python	code	that	actually
works	that	you	can	dive	in	and	mess	around	with	to	make	those	concepts	sink	home,	and	if	you're	working
as	a	data	analyst	in	the	finance	industry,	this	course	can	also	teach	you	to	make	the	transition	into	the	tech
industry.	All	you	need	is	some	prior	experience	in	programming	or	scripting	and	you	should	be	good	to
go.

The	general	format	of	this	book	is	I'll	start	with	each	concept,	explaining	it	in	a	bunch	of	sections	and
graphical	examples.	I	will	introduce	you	to	some	of	the	notations	and	fancy	terminologies	that	data
scientists	like	to	use	so	you	can	talk	the	same	language,	but	the	concepts	themselves	are	generally	pretty
simple.	After	that,	I'll	throw	you	into	some	actual	Python	code	that	actually	works	that	we	can	run	and
mess	around	with,	and	that	will	show	you	how	to	actually	apply	these	ideas	to	actual	data.	These	are
going	to	be	presented	as	IPython	Notebook	files,	and	that's	a	format	where	I	can	intermix	code	and	notes
surrounding	the	code	that	explain	what's	going	on	in	the	concepts.	You	can	take	these	notebook	files	with
you	after	going	through	this	book	and	use	that	as	a	handy-quick	reference	later	on	in	your	career,	and	at	the
end	of	each	concept,	I'll	encourage	you	to	actually	dive	into	that	Python	code,	make	some	modifications,
mess	around	with	it,	and	just	gain	more	familiarity	by	getting	hands-on	and	actually	making	some
modifications,	and	seeing	the	effects	they	have.





Who	this	book	is	for
If	you	are	a	budding	data	scientist	or	a	data	analyst	who	wants	to	analyze	and	gain	actionable	insights
from	data	using	Python,	this	book	is	for	you.	Programmers	with	some	experience	in	Python	who	want	to
enter	the	lucrative	world	of	Data	Science	will	also	find	this	book	to	be	very	useful.

	





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"We	can	measure	that	using	the	r2_score()
function	from	sklearn.metrics."

A	block	of	code	is	set	as	follows:

import	numpy	as	np	

import	pandas	as	pd	

from	sklearn	import	tree	

	

input_file	=	"c:/spark/DataScience/PastHires.csv"	

df	=	pd.read_csv(input_file,	header	=	0)	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or	items	are
set	in	bold:

import	numpy	as	np

import	pandas	as	pd

from	sklearn	import	tree

input_file	=	"c:/spark/DataScience/PastHires.csv"

df	=	pd.read_csv(input_file,	header	=	0)	

Any	command-line	input	or	output	is	written	as	follows:

spark-submit	SparkKMeans.py		

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"On	Windows	10,	you'll	need	to	open	up	the	Start	menu
and	go	to	Windows	System	|	Control	Panel	to	open	up	Control	Panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject
of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.





Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files
emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's	webpage	at	the
Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's	name	in	the	Search	box.
Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Hands-On-Data-Science-and-
Python-Machine-Learning.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Data-Science-and-Python-Machine-Learning
https://github.com/PacktPublishing/




Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from	https://www.packtpub.com/sites/default/files/downloads/HandsOnDataScienceandPythonMachineLearning_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/HandsOnDataScienceandPythonMachineLearning_ColorImages.pdf




Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our
website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the	name	of
the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support




Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.





Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we	will
do	our	best	to	address	the	problem.





Getting	Started
Since	there's	going	to	be	code	associated	with	this	book	and	sample	data	that	you	need	to	get	as	well,	let
me	first	show	you	where	to	get	that	and	then	we'll	be	good	to	go.	We	need	to	get	some	setup	out	of	the	way
first.	First	things	first,	let's	get	the	code	and	the	data	that	you	need	for	this	book	so	you	can	play	along	and
actually	have	some	code	to	mess	around	with.	The	easiest	way	to	do	that	is	by	going	right	to	this	-	Getting
Started.

In	this	chapter,	we	will	first	install	and	get	ready	in	a	working	Python	environment:

Installing	Enthought	Canopy
Installing	Python	libraries
How	to	work	with	the	IPython/Jupyter	Notebook
How	to	use,	read	and	run	the	code	files	for	this	book
Then	we'll	dive	into	a	crash	course	into	understanding	Python	code:
Python	basics	-	part	1
Understanding	Python	code
Importing	modules
Experimenting	with	lists
Tuples
Python	basics	-	part	2
Running	Python	scripts

You'll	have	everything	you	need	for	an	amazing	journey	into	data	science	with	Python,	once	we've	set	up
your	environment	and	familiarized	you	with	Python	in	this	chapter.

	





Installing	Enthought	Canopy
Let's	dive	right	in	and	get	what	you	need	installed	to	actually	develop	Python	code	with	data	science	on
your	desktop.	I'm	going	to	walk	you	through	installing	a	package	called	Enthought	Canopy	which	has	both
the	development	environment	and	all	the	Python	packages	you	need	pre-installed.	It	makes	life	really	easy,
but	if	you	already	know	Python	you	might	have	an	existing	Python	environment	already	on	your	PC,	and	if
you	want	to	keep	using	it,	maybe	you	can.

The	most	important	thing	is	that	your	Python	environment	has	Python	3.5	or	newer,	that	it	supports	Jupyter
Notebooks	(because	that's	what	we're	going	to	use	in	this	course),	and	that	you	have	the	key	packages	you
need	for	this	book	installed	on	your	environment.	I'll	explain	exactly	how	to	achieve	a	full	installation	in	a
few	simple	steps	-	it's	going	to	be	very	easy.

Let's	first	overview	those	key	packages,	most	of	which	Canopy	will	be	installing	for	us	automatically	for
us.	Canopy	will	install	Python	3.5	for	us,	and	some	further	packages	we	need	including:	scikit_learn,	xlrd,
and	statsmodels.	We'll	need	to	manually	use	the	pip	command,	to	install	a	package	called	pydot2plus.	And	that
will	be	it	-	it's	very	easy	with	Canopy!

Once	the	following	installation	steps	are	complete,	we'll	have	everything	we	need	to	actually	get	up	and
running,	and	so	we'll	open	up	a	little	sample	file	and	do	some	data	science	for	real.	Now	let's	get	you	set
up	with	everything	you	need	to	get	started	as	quickly	as	possible:

1.	 The	first	thing	you	will	need	is	a	development	environment,	called	an	IDE,	for	Python	code.	What
we're	going	to	use	for	this	book	is	Enthought	Canopy.	It's	a	scientific	computing	environment,	and	it's
going	to	work	well	with	this	book:



2.	 To	get	Canopy	installed,	just	go	to	www.enthought.com	and	click	on	DOWNLOADS:	Canopy:

3.	 Enthought	Canopy	is	free,	for	the	Canopy	Express	edition	-	which	is	what	you	want	for	this	book.
You	must	then	select	your	operating	system	and	architecture.	For	me,	that's	Windows	64-bit,	but
you'll	want	to	click	on	corresponding	Download	button	for	your	operating	system	and	with	the
Python	3.5	option:

http://www.enthought.com


4.	 We	don't	have	to	give	them	any	personal	information	at	this	step.	There's	a	pretty	standard	Windows
installer,	so	just	let	that	download:

5.	 After	that's	downloaded	we	go	ahead	and	open	up	the	Canopy	installer,	and	run	it!	You	might	want	to
read	the	license	before	you	agree	to	it,	that's	up	to	you,	and	then	just	wait	for	the	installation	to
complete.

6.	 Once	you	hit	the	Finish	button	at	the	end	of	the	install	process,	allow	it	to	launch	Canopy
automatically.	You'll	see	that	Canopy	then	sets	up	the	Python	environment	by	itself,	which	is	great,
but	this	will	take	a	minute	or	two.

7.	 Once	the	installer	is	done	setting	up	your	Python	environment,	you	should	get	a	screen	that	looks	like
the	one	below.	It	says	welcome	to	Canopy	and	a	bunch	of	big	friendly	buttons:



8.	 The	beautiful	thing	is	that	pretty	much	everything	you	need	for	this	book	comes	pre-installed	with
Enthought	Canopy,	that's	why	I	recommend	using	it!

9.	 There	is	just	one	last	thing	we	need	to	set	up,	so	go	ahead	and	click	the	Editor	button	there	on	the
Canopy	Welcome	screen.	You'll	then	see	the	Editor	screen	come	up,	and	if	you	click	down	in	the
window	at	the	bottom,	I	want	you	to	just	type	in:

!pip	install	pydotplus	

10.	 Here's	how	that's	going	to	look	on	your	screen	as	you	type	the	above	line	in	at	the	bottom	of	the
Canopy	Editor	window;	don't	forget	to	press	the	Return	button	of	course:

11.	 One	you	hit	the	Return	button,	this	will	install	that	one	extra	module	that	we	need	for	later	on	in	the
book,	when	we	get	to	talking	about	decision	trees,	and	rendering	decision	trees.

12.	 Once	it	has	finished	installing	pydotplus,	it	should	come	back	and	say	it's	successfully	installed	and,
voila,	you	have	everything	you	need	now	to	get	started!	The	installation	is	done,	at	this	point	-	but
let's	just	take	a	few	more	steps	to	confirm	our	installation	is	running	nicely.





Giving	the	installation	a	test	run
1.	 Let's	now	give	your	installation	a	test	run.	The	first	thing	to	do	is	actually	to	entirely	close	the

Canopy	window!	This	is	because	we're	not	actually	going	to	be	editing	and	using	our	code	within
this	Canopy	editor.	Instead	we're	going	to	be	using	something	called	an	IPython	Notebook,	which	is
also	now	known	as	the	Jupyter	Notebook.

2.	 Let	me	show	you	how	that	works.	If	you	now	open	a	window	in	your	operating	system	to	view	the
accompanying	book	files	that	you	downloaded,	as	described	in	the	Preface	of	this	book.	It	should
look	something	like	this,	with	the	set	of	.ipynb	code	files	you	downloaded	for	this	book:

Now	go	down	to	the	Outliers	file	in	the	list,	that's	the	Outliers.ipynb	file,	double-click	it,	and	what	should
happen	is	it's	going	to	start	up	Canopy	first	and	then	it's	going	to	kick	off	your	web	browser!	This	is
because	IPython/Jupyter	Notebooks	actually	live	within	your	web	browser.	There	can	be	a	small	pause	at
first,	and	it	can	be	a	little	bit	confusing	first	time,	but	you'll	soon	get	used	to	the	idea.

You	should	soon	see	Canopy	come	up	and	for	me	my	default	web	browser	Chrome	comes	up.	You	should
see	the	following	Jupyter	Notebook	page,	since	we	double-clicked	on	the	Outliers.ipynb	file:



If	you	see	this	screen,	it	means	that	everything's	working	great	in	your	installation	and	you're	all	set	for	the
journey	across	rest	of	this	book!





If	you	occasionally	get	problems	opening	your
IPNYB	files
Just	occasionally,	I've	noticed	that	things	can	go	a	little	bit	wrong	when	you	double-click	on	a	.ipynb	file.
Don't	panic!	Just	sometimes,	Canopy	can	get	a	little	bit	flaky,	and	you	might	see	a	screen	that	is	looking
for	some	password	or	token,	or	you	might	occasionally	see	a	screen	that	says	it	can't	connect	at	all.

Don't	panic	if	either	of	those	things	happen	to	you,	they	are	just	random	quirks,	sometimes	things	just	don't
start	up	in	the	right	order	or	they	don't	start	up	in	time	on	your	PC	and	it's	okay.

All	you	have	to	do	is	go	back	and	try	to	open	that	file	a	second	time.	Sometimes	it	takes	two	or	three	tries
to	actually	get	it	loaded	up	properly,	but	if	you	do	it	a	couple	of	times	it	should	pop	up	eventually,	and	a
Jupyter	Notebook	screen	like	the	one	we	saw	previously	about	Dealing	with	Outliers,	is	what	you	should
see.

	





Using	and	understanding	IPython	(Jupyter)
Notebooks
Congratulations	on	your	installation!	Let's	now	explore	using	Jupyter	Notebooks,	which	is	also	known	as
IPython	Notebook.	These	days,	the	more	modern	name	is	the	Jupyter	Notebook,	but	a	lot	of	people	still
call	it	an	IPython	Notebook,	and	I	consider	the	names	interchangeable	for	working	developers	as	a	result.
I	do	also	find	the	name	IPython	Notebooks	helps	me	remember	the	notebook	file	name	suffix	which	is
.ipynb	as	you'll	get	to	know	very	well	in	this	book!

Okay	so	now	let's	take	it	right	from	the	top	again	-	with	our	first	exploration	of	the	IPython/Jupyter
Notebook.	If	you	haven't	yet	done	so,	please	navigate	to	the	DataScience	folder	where	we	have	downloaded
all	the	materials	for	this	book.	For	me,	that's	E:DataScience,	and	if	you	didn't	do	so	during	the	preceding
installation	section,	please	now	double-click	and	open	up	the	Outliers.ipynb	file.

Now	what's	going	to	happen	when	we	double-click	on	this	IPython	.ipynb	file	is	that	first	of	all	it's	going	to
spark	up	Canopy,	if	it's	not	sparked	up	already,	and	then	it's	going	to	launch	a	web	browser.	This	is	how
the	full	Outliers	notebook	webpage	looks	within	my	browser:



As	you	can	see	here,	notebooks	are	structured	in	such	a	way	that	I	can	intersperse	my	little	notes	and
commentary	about	what	you're	seeing	here	within	the	actual	code	itself,	and	you	can	actually	run	this	code
within	your	web	browser!	So,	it's	a	very	handy	format	for	me	to	give	you	sort	of	a	little	reference	that	you
can	use	later	on	in	life	to	go	and	remind	yourself	how	these	algorithms	work	that	we're	going	to	talk	about,
and	actually	experiment	with	them	and	play	with	them	yourself.

The	way	that	the	IPython/Jupyter	Notebook	files	work	is	that	they	actually	run	from	within	your	browser,
like	a	webpage,	but	they're	backed	by	the	Python	engine	that	you	installed.	So	you	should	be	seeing	a
screen	similar	to	the	one	shown	in	the	previous	screenshot.

You'll	notice	as	you	scroll	down	the	notebook	in	your	browser,	there	are	code	blocks.	They're	easy	to	spot
because	they	contain	our	actual	code.	Please	find	the	code	box	for	this	code	in	the	Outliers	notebook,
quite	near	the	top:

%matplotlib	inline	

import	numpy	as	np	

	

incomes	=	np.random.normal(27000,	15000,	10000)	

incomes	=	np.append(incomes,	[1000000000])	

	

import	matplotlib.pyplot	as	plt	

plt.hist(incomes,	50)	

plt.show()	

Let's	take	a	quick	look	at	this	code	while	we're	here.	We	are	setting	up	a	little	income	distribution	in	this
code.	We're	simulating	the	distribution	of	income	in	a	population	of	people,	and	to	illustrate	the	effect	that
an	outlier	can	have	on	that	distribution,	we're	simulating	Donald	Trump	entering	the	mix	and	messing	up
the	mean	value	of	the	income	distribution.	By	the	way,	I'm	not	making	a	political	statement,	this	was	all
done	before	Trump	became	a	politician.	So	you	know,	full	disclosure	there.

We	can	select	any	code	block	in	the	notebook	by	clicking	on	it.	So	if	you	now	click	in	the	code	block	that
contains	the	code	we	just	looked	at	above,	we	can	then	hit	the	run	button	at	the	top	to	run	it.	Here's	the
area	at	the	top	of	the	screen	where	you'll	find	the	Run	button:

Hitting	the	Run	button	with	the	code	block	selected,	will	cause	this	graph	to	be	regenerated:



Similarly,	we	can	click	on	the	next	code	block	a	little	further	down,	you'll	spot	the	one	which	has	the
following	single	line	of	code	:

incomes.mean()	

If	you	select	the	code	block	containing	this	line,	and	hit	the	Run	button	to	run	the	code,	you'll	see	the
output	below	it,	which	ends	up	being	a	very	large	value	because	of	the	effect	of	that	outlier,	something
like	this:

127148.50796177129

Let's	keep	going	and	have	some	fun.	In	the	next	code	block	down,	you'll	see	the	following	code,	which
tries	to	detect	outliers	like	Donald	Trump	and	remove	them	from	the	dataset:

def	reject_outliers(data):	

				u	=	np.median(data)	

				s	=	np.std(data)	

				filtered	=	[e	for	e	in	data	if	(u	-	2	*	s	<	e	<	u	+	2	*	s)]	

				return	filtered	

	

filtered	=	reject_outliers(incomes)	

plt.hist(filtered,	50)	

plt.show()	

So	select	the	corresponding	code	block	in	the	notebook,	and	press	the	run	button	again.	When	you	do	that,
you'll	see	this	graph	instead:



Now	we	see	a	much	better	histogram	that	represents	the	more	typical	American	-	now	that	we've	taken	out
our	outlier	that	was	messing	things	up.

So,	at	this	point,	you	have	everything	you	need	to	get	started	in	this	course.	We	have	all	the	data	you	need,
all	the	scripts,	and	the	development	environment	for	Python	and	Python	notebooks.	So,	let's	rock	and	roll.
Up	next	we're	going	to	do	a	little	crash	course	on	Python	itself,	and	even	if	you're	familiar	with	Python,	it
might	be	a	good	little	refresher	so	you	might	want	to	watch	it	regardless.	Let's	dive	in	and	learn	Python.





Python	basics	-	Part	1
If	you	already	know	Python,	you	can	probably	skip	the	next	two	sections.	However,	if	you	need	a
refresher,	or	if	you	haven't	done	Python	before,	you'll	want	to	go	through	these.	There	are	a	few	quirky
things	about	the	Python	scripting	language	that	you	need	to	know,	so	let's	dive	in	and	just	jump	into	the
pool	and	learn	some	Python	by	writing	some	actual	code.

Like	I	said	before,	in	the	requirements	for	this	book,	you	should	have	some	sort	of	programming
background	to	be	successful	in	this	book.	You've	coded	in	some	sort	of	language,	even	if	it's	a	scripting
language,	JavaScript,	I	don't	care	whether	it	is	C++,	Java,	or	something,	but	if	you're	new	to	Python,	I'm
going	to	give	you	a	little	bit	of	a	crash	course	here.	I'm	just	going	to	dive	right	in	and	go	right	into	some
examples	in	this	section.

There	are	a	few	quirks	about	Python	that	are	a	little	bit	different	than	other	languages	you	might	have	seen;
so	I	just	want	to	walk	through	what's	different	about	Python	from	other	scripting	languages	you	may	have
worked	with,	and	the	best	way	to	do	that	is	by	looking	at	some	real	examples.	Let's	dive	right	in	and	look
at	some	Python	code:

If	you	open	up	the	DataScience	folder	for	this	class,	which	you	downloaded	earlier	in	the	earlier	section,
you	should	find	a	Python101.ipynb	file;	go	ahead	and	double-click	on	that.	It	should	open	right	up	in	Canopy
if	you	have	everything	installed	properly,	and	it	should	look	a	little	bit	something	like	the	following



screenshot:	

New	versions	of	Canopy	will	open	the	code	in	your	web	browser,	not	the	Canopy	editor!
This	is	okay!

One	cool	thing	about	Python	is	that	there	are	several	ways	to	run	code	with	Python.	You	can	run	it	as	a
script,	like	you	would	with	a	normal	programming	language.	You	can	also	write	in	this	thing	called	the
IPython	Notebook,	which	is	what	we're	using	here.	So	it's	this	format	where	you	actually	have	a	web
browser-like	view	where	you	can	actually	write	little	notations	and	notes	to	yourself	in	HTML	markup
stuff,	and	you	can	also	embed	actual	code	that	really	runs	using	the	Python	interpreter.





Understanding	Python	code
The	first	example	that	I	want	to	give	you	of	some	Python	code	is	right	here.	The	following	block	of	code
represents	some	real	Python	code	that	we	can	actually	run	right	within	this	view	of	the	entire	notebook
page,	but	let's	zoom	in	now	and	look	at	that	code:

Let's	take	a	look	at	what's	going	on.	We	have	a	list	of	numbers	and	a	list	in	Python,	kind	of	like	an	array	in
other	languages.	It	is	designated	by	these	square	brackets:

We	have	this	data	structure	of	a	list	that	contains	the	numbers	1	through	6,	and	then	to	iterate	through	every
number	in	that	list,	we'll	say	for	number	in	listOfNumbers:,	that's	the	Python	syntax	for	iterating	through	a	list
of	stuff	and	a	colon.

Tabs	and	whitespaces	have	real	meaning	in	Python,	so	you	can't	just	format	things	the
way	you	want	to.	You	have	to	pay	attention	to	them.

The	point	that	I	want	to	make	is	that	in	other	languages,	it's	pretty	typical	to	have	a	bracket	or	a	brace	of
some	sort	there	to	denote	that	I'm	inside	a	for	loop,	an	if	block,	or	some	sort	of	block	of	code,	but	in
Python,	that's	all	designated	with	whitespaces.	Tab	is	actually	important	in	telling	Python	what's	in	which



block	of	code:

for	number	in	listOfNumbers:	

				print	number,	

				if	(number	%	2	==	0):	

								print	("is	even")

				else:	

								print	("is	odd")	

									

print	("Hooray!	We're	all	done.")

You'll	notice	that	within	this	for	block,	we	have	a	tab	of	one	within	that	entire	block,	and	for	every	number
in	listOfNumbers	we	will	execute	all	of	this	code	that's	tabbed	in	by	one	Tab	stop.	We'll	print	the	number,
and	the	comma	just	means	that	we're	not	going	to	do	a	new	line	afterwards.	We'll	print	something	else
right	after	it,	and	if	(number	%	2	=	0),	we'll	say	it's	even.	Otherwise,	we'll	say	it's	odd,	and	when	we're	done,
we'll	print	out	All	done:

You	can	see	the	output	right	below	the	code.	I	ran	the	output	before	as	I	had	actually	saved	it	within	my
notebook,	but	if	you	want	to	actually	run	it	yourself,	you	can	just	click	within	that	block	and	click	on	the
Play	button,	and	we'll	actually	execute	it	and	do	it	again.	Just	to	convince	yourself	that	it's	really	doing
something,	let's	change	the	print	statement	to	say	something	else,	say,	Hooray!	We're	all	done.	Let's	party!	If	I
run	this	now,	you	can	see,	sure	enough,	my	message	there	has	changed:

So	again,	the	point	I	want	to	make	is	that	whitespace	is	important.	You	will	designate	blocks	of	code	that
run	together,	you	know,	such	as	a	for	loop	or	if	then	statements,	using	indentation	or	tabs,	so	remember
that.	Also,	pay	attention	to	your	colons	too.	You'll	notice	that	a	lot	of	these	clauses	begin	with	a	colon.





Importing	modules
Python	itself,	like	any	language,	is	fairly	limited	in	what	it	can	do.	The	real	power	of	using	Python	for
machine	learning	and	data	mining	and	data	science	is	the	power	of	all	the	external	libraries	that	are
available	for	it	for	that	purpose.	One	of	those	libraries	is	called	NumPy,	or	numeric	Python,	and,	for
example,	here	we	can	import	the	Numpy	package,	which	is	included	with	Canopy	as	np.

This	means	that	I'll	refer	to	the	NumPy	package	as	np,	and	I	could	call	that	anything	I	want.	I	could	call	it	Fred
or	Tim,	but	it's	best	to	stick	with	something	that	actually	makes	sense;	now	that	I'm	calling	that	NumPy
package	np,	I	can	refer	to	it	using	np:

import	numpy	as	np

In	this	example,	I'll	call	the	random	function	that's	provided	as	part	of	the	NumPy	package	and	call	its	normal
function	to	actually	generate	a	normal	distribution	of	random	numbers	using	these	parameters	and	print
them	out.	Since	it	is	random,	I	should	get	different	results	every	time:

import	numpy	as	np

A	=	np.random.normal(25.0,	5.0,	10)

print	(A)

The	output	should	look	like	this:

Sure	enough,	I	get	different	results.	That's	pretty	cool.





Data	structures
Let's	move	on	to	data	structures.	If	you	need	to	pause	and	let	things	sink	in	a	little	bit,	or	you	want	to	play
around	with	these	a	little	bit	more,	feel	free	to	do	so.	The	best	way	to	learn	this	stuff	is	to	dive	in	and
actually	experiment,	so	I	definitely	encourage	doing	that,	and	that's	why	I'm	giving	you	working
IPython/Jupyter	Notebooks,	so	you	can	actually	go	in,	mess	with	the	code,	do	different	stuff	with	it.

For	example,	here	we	have	a	distribution	around	25.0,	but	let's	make	it	around	55.0:	import	numpy	as	np
A	=	np.random.normal(55.0,	5.0,	10)
print	(A)

Hey,	all	my	numbers	changed,	they're	closer	to	55	now,	how	about	that?

Alright,	let's	talk	about	data	structures	a	little	bit	here.	As	we	saw	in	our	first	example,	you	can	have	a
list,	and	the	syntax	looks	like	this.





Experimenting	with	lists
x	=	[1,	2,	3,	4,	5,	6]

print	(len(x))

You	can	say,	call	a	list	x,	for	example,	and	assign	it	to	the	numbers	1	through	6,	and	these	square	brackets
indicate	that	we	are	using	a	Python	list,	and	those	are	immutable	objects	that	I	can	actually	add	things	to
and	rearrange	as	much	as	I	want	to.	There's	a	built-in	function	for	determining	the	length	of	the	list	called
len,	and	if	I	type	in	len(x),	that	will	give	me	back	the	number	6	because	there	are	6	numbers	in	my	list.

Just	to	make	sure,	and	again	to	drive	home	the	point	that	this	is	actually	running	real	code	here,	let's	add
another	number	in	there,	such	as	4545.	If	you	run	this,	you'll	get	7	because	now	there	are	7	numbers	in	that
list:

x	=	[1,	2,	3,	4,	5,	6,	4545]

print	(len(x))

The	output	of	the	previous	code	example	is	as	follows:

7

Go	back	to	the	original	example	there.	Now	you	can	also	slice	lists.	If	you	want	to	take	a	subset	of	a	list,
there's	a	very	simple	syntax	for	doing	so:

x[3:]

The	output	of	the	above	code	example	is	as	follows:

[1,	2,	3]





Pre	colon
If,	for	example,	you	want	to	take	the	first	three	elements	of	a	list,	everything	before	element	number	3,	we
can	say	:3	to	get	the	first	three	elements,	1,	2,	and	3,	and	if	you	think	about	what's	going	on	there,	as	far	as
indices	go,	like	in	most	languages,	we	start	counting	from	0.	So	element	0	is	1,	element	1	is	2,	and	element
2	is	3.	Since	we're	saying	we	want	everything	before	element	3,	that's	what	we're	getting.

So,	you	know,	never	forget	that	in	most	languages,	you	start	counting	at	0	and	not	1.

Now	this	can	confuse	matters,	but	in	this	case,	it	does	make	intuitive	sense.	You	can	think	of	that	colon	as
meaning	I	want	everything,	I	want	the	first	three	elements,	and	I	could	change	that	to	four	just	again	to
make	the	point	that	we're	actually	doing	something	real	here:

x[:4]

The	output	of	the	above	code	example	is	as	follows:

[1,	2,	3,	4]



[4,	5,	6]

You	might	want	to	keep	this	IPython/Jupyter	Notebook	file	around.	It's	a	good	reference,
because	sometimes	it	can	get	confusing	as	to	whether	the	slicing	operator	includes	that
element	or	if	it's	up	to	or	including	it	or	not.	So	the	best	way	is	to	just	play	around	with	it
here	and	remind	yourself.



[5,	6]

By	saying	x[-2:],	this	means	that	I	want	the	last	two	elements	in	the	list.	This	means	that
go	backwards	two	from	the	end,	and	that	will	give	me	5	and	6,	because	those	are	the	last
two	things	on	my	list.



[1,	2,	3,	4,	5,	6,	7,	8]

I	have	my	list	of	1,	2,	3,	4,	5,	6.	If	I	want	to	extend	it,	I	can	say	I	have	a	new	list	here,	[7,
8],	and	that	bracket	indicates	this	is	a	new	list	of	itself.	This	could	be	a	list	implicit,	you
know,	that's	inline	there,	it	could	be	referred	to	by	another	variable.	You	can	see	that	once
I	do	that,	the	new	list	I	get	actually	has	that	list	of	7,	8	appended	on	to	the	end	of	it.	So	I
have	a	new	list	by	extending	that	list	with	another	list.



[1,	2,	3,	4,	5,	6,	7,	8,	9]



	



Complex	data	structures
	

You	can	also	have	complex	data	structures	with	lists.	So	you	don't	have	to	just	put	numbers	in	it;	you	can
actually	put	strings	in	it.	You	can	put	numbers	in	it.	You	can	put	other	lists	in	it.	It	doesn't	matter.	Python	is
a	weakly-typed	language,	so	you	can	pretty	much	put	whatever	kind	of	data	you	want,	wherever	you	want,
and	it	will	generally	be	an	OK	thing	to	do:

y	=	[10,	11,	12]

listOfLists	=	[x,	y]

listOfLists

In	the	preceding	example,	I	have	a	second	list	that	contains	10,	11,	12,	that	I'm	calling	y.	I'll	create	a	new	list
that	contains	two	lists.	How's	that	for	mind	blowing?	Our	listofLists	list	will	contain	the	x	list	and	the	y
list,	and	that's	a	perfectly	valid	thing	to	do.	You	can	see	here	that	we	have	a	bracket	indicating	the
listofLists	list,	and	within	that,	we	have	another	set	of	brackets	indicating	each	individual	list	that	is	in	that
list:

[[	1,	2,	3,	4,	5,	6,	7,	8,	9	],	[10,	11,	12]]

So,	sometimes	things	like	these	will	come	in	handy.

	

	

	



11

So	y[1]	will	return	element	1.	Remember	that	y	had	10,	11,	12	in	it	-	observe	the	previous
example,	and	we	start	counting	from	0,	so	element	1	will	actually	be	the	second	element
in	the	list,	or	the	number	11	in	this	case,	alright?



[1,	2,	3]



[3,	2,	1]

If	you	need	to	do	a	reverse	sort,	you	can	just	say	reverse=True	as	an	attribute,	as	a
parameter	in	that	sort	function,	and	that	will	put	it	back	to	3,	2,	1.

If	you	need	to	let	that	sink	in	a	little	bit,	feel	free	to	go	back	and	read	it	a	little	bit	more.



3

We	can	say	x=	(1,	2,	3).	I	can	still	use	length	-	len	on	that	to	say	that	there	are	three
elements	in	that	tuple,	and	even	though,	if	you're	not	familiar	with	the	term	tuple,	a
tuple	can	actually	contain	as	many	elements	as	you	want.	Even	though	it	sounds	like	it's
Latin	based	on	the	number	three,	it	doesn't	mean	you	have	three	things	in	it.	Usually,	it
only	has	two	things	in	it.	They	can	have	as	many	as	you	want,	really.



6





List	of	tuples
We	can	also,	like	we	could	with	lists,	use	tuples	as	elements	of	a	list.

listOfTuples	=	[x,	y]

listOfTuples

The	output	to	the	above	code	is	as	follows:

[(1,	2,	3),	(4,	5,	6)]

We	can	create	a	new	list	that	contains	two	tuples.	So	in	the	preceding	example,	we	have	our	x	tuple	of	(1,
2,	3)	and	our	y	tuple	of	(4,	5,	6);	then	we	make	a	list	of	those	two	tuples	and	we	get	back	this	structure,
where	we	have	square	brackets	indicating	a	list	that	contains	two	tuples	indicated	by	parentheses,	and	one
thing	that	tuples	are	commonly	used	for	when	we're	doing	data	science	or	any	sort	of	managing	or
processing	of	data	really	is	to	use	it	to	assign	variables	to	input	data	as	it's	read	in.	I	want	to	walk	you
through	a	little	bit	on	what's	going	on	in	the	following	example:

(age,	income)	=	"32,120000".split(',')

print	(age)

print	(income)

The	output	to	the	above	code	is	as	follows:

32

120000

Let's	say	we	have	a	line	of	input	data	coming	in	and	it's	a	comma-separated	value	file,	which	contains
ages,	say	32,	comma-delimited	by	an	income,	say	120000	for	that	age,	just	to	make	something	up.	What	I	can
do	is	as	each	line	comes	in,	I	can	call	the	split	function	on	it	to	actually	separate	that	into	a	pair	of	values
that	are	delimited	by	commas,	and	take	that	resulting	tuple	that	comes	out	of	split	and	assign	it	to	two
variables-age	and	income-all	at	once	by	defining	a	tuple	of	age,	income	and	saying	that	I	want	to	set	that
equal	to	the	tuple	that	comes	out	of	the	split	function.

So	this	is	basically	a	common	shorthand	you'll	see	for	assigning	multiple	fields	to	multiple	variables	at
once.	If	I	run	that,	you	can	see	that	the	age	variable	actually	ends	up	assigned	to	32	and	income	to	120,000
because	of	that	little	trick	there.	You	do	need	to	be	careful	when	you're	doing	this	sort	of	thing,	because	if
you	don't	have	the	expected	number	of	fields	or	the	expected	number	of	elements	in	the	resulting	tuple,	you
will	get	an	exception	if	you	try	to	assign	more	stuff	or	less	stuff	than	you	expect	to	see	here.





Dictionaries
Finally,	the	last	data	structure	that	we'll	see	a	lot	in	Python	is	a	dictionary,	and	you	can	think	of	that	as	a
map	or	a	hash	table	in	other	languages.	It's	a	way	to	basically	have	a	sort	of	mini-database,	sort	of	a
key/value	data	store	that's	built	into	Python.	So	let's	say,	I	want	to	build	up	a	little	dictionary	of	Star	Trek
ships	and	their	captains:

I	can	set	up	a	captains	=	{},	where	curly	brackets	indicates	an	empty	dictionary.	Now	I	can	use	this	sort	of	a
syntax	to	assign	entries	in	my	dictionary,	so	I	can	say	captains	for	Enterprise	is	Kirk,	for	Enterprise	D	it	is
Picard,	for	Deep	Space	Nine	it	is	Sisko,	and	for	Voyager	it	is	Janeway.	Now	I	have,	basically,	this	lookup	table	that
will	associate	ship	names	with	their	captain,	and	I	can	say,	for	example,	print	captains["Voyager"],	and	I	get
back	Janeway.

A	very	useful	tool	for	basically	doing	lookups	of	some	sort.	Let's	say	you	have	some	sort	of	an	identifier
in	a	dataset	that	maps	to	some	human-readable	name.	You'll	probably	be	using	a	dictionary	to	actually	do
that	look	up	when	you're	printing	it	out.

We	can	also	see	what	happens	if	you	try	to	look	up	something	that	doesn't	exist.	Well,	we	can	use	the	get
function	on	a	dictionary	to	safely	return	an	entry.	So	in	this	case,	Enterprise	does	have	an	entry	in	my
dictionary,	it	just	gives	me	back	Kirk,	but	if	I	call	the	NX-01	ship	on	the	dictionary,	I	never	defined	the
captain	of	that,	so	it	comes	back	with	a	None	value	in	this	example,	which	is	better	than	throwing	an
exception,	but	you	do	need	to	be	aware	that	this	is	a	possibility:

print	(captains.get("NX-01"))

The	output	of	the	above	code	is	as	follows:

None

The	captain	is	Jonathan	Archer,	but	you	know,	I'm	get	a	little	bit	too	geeky	here	now.





Iterating	through	entries
for	ship	in	captains:

					print	(ship	+	":	"	+	captains[ship])

The	output	of	the	above	code	is	as	follows:

Let's	look	at	a	little	example	of	iterating	through	the	entries	in	a	dictionary.	If	I	want	to	iterate	through
every	ship	that	I	have	in	my	dictionary	and	print	out	captains,	I	can	type	for	ship	in	captains,	and	this	will
iterate	through	every	single	key	in	my	dictionary.	Then	I	can	print	out	the	lookup	value	of	each	ship's
captain,	and	that's	the	output	that	I	get	there.

There	you	have	it.	This	is	basically	the	main	data	structures	that	you'll	encounter	in	Python.	There	are
some	others,	such	as	sets,	but	we'll	not	really	use	them	in	this	book,	so	I	think	that's	enough	to	get	you
started.	Let's	dive	into	some	more	Python	nuances	in	our	next	section.





Python	basics	-	Part	2
In	addition	to	Python	Basics	-	Part	1,	let	us	now	try	to	grasp	more	Python	concepts	in	detail.





Functions	in	Python
Let's	talk	about	functions	in	Python.	Like	with	other	languages,	you	can	have	functions	that	let	you	repeat	a
set	of	operations	over	and	over	again	with	different	parameters.	In	Python,	the	syntax	for	doing	that	looks
like	this:

def	SquareIt(x):

				return	x	*	x

print	(SquareIt(2))

The	output	of	the	above	code	is	as	follows:

4

You	declare	a	function	using	the	def	keyword.	It	just	says	this	is	a	function,	and	we'll	call	this	function
SquareIt,	and	the	parameter	list	is	then	followed	inside	parentheses.	This	particular	function	only	takes	one
parameter	that	we'll	call	x.	Again,	remember	that	whitespace	is	important	in	Python.	There's	not	going	to
be	any	curly	brackets	or	anything	enclosing	this	function.	It's	strictly	defined	by	whitespace.	So	we	have	a
colon	that	says	that	this	function	declaration	line	is	over,	but	then	it's	the	fact	that	it's	tabbed	by	one	or
more	tabs	that	tells	the	interpreter	that	we	are	in	fact	within	the	SquareIt	function.

So	def	SquareIt(x):	tab	returns	x	*	x,	and	that	will	return	the	square	of	x	in	this	function.	We	can	go	ahead
and	give	that	a	try.	print	squareIt(2)	is	how	we	call	that	function.	It	looks	just	like	it	would	be	in	any	other
language,	really.	This	should	return	the	number	4;	we	run	the	code,	and	in	fact	it	does.	Awesome!	That's
pretty	simple,	that's	all	there	is	to	functions.	Obviously,	I	could	have	more	than	one	parameter	if	I	wanted
to,	even	as	many	parameters	as	I	need.

Now	there	are	some	weird	things	you	can	do	with	functions	in	Python,	that	are	kind	of	cool.	One	thing	you
can	do	is	to	pass	functions	around	as	though	they	were	parameters.	Let's	take	a	closer	look	at	this
example:

#You	can	pass	functions	around	as	parameters

def	DoSomething(f,	x):

				return	f(x)

print	(DoSomething(SquareIt,	3))

The	output	of	the	preceding	code	is	as	follows:

9

Now	I	have	a	function	called	DoSomething,	def	DoSomething,	and	it	will	take	two	parameters,	one	that	I'll	call	f
and	the	other	I'll	call	x,	and	if	I	happen,	I	can	actually	pass	in	a	function	for	one	of	these	parameters.	So,
think	about	that	for	a	minute.	Look	at	this	example	with	a	bit	more	sense.	Here,	DoSomething(f,x):	will	return
f	of	x;	it	will	basically	call	the	f	function	with	x	as	a	parameter,	and	there's	no	strong	typing	in	Python,	so
we	have	to	just	kind	of	make	sure	that	what	we	are	passing	in	for	that	first	parameter	is	in	fact	a	function
for	this	to	work	properly.

For	example,	we'll	say	print	DoSomething,	and	for	the	first	parameter,	we'll	pass	in	SquareIt,	which	is	actually
another	function,	and	the	number	3.	What	this	should	do	is	to	say	do	something	with	the	SquareIt	function



and	the	3	parameter,	and	that	will	return	(SquareIt,	3),	and	3	squared	last	time	I	checked	was	9,	and	sure
enough,	that	does	in	fact	work.

This	might	be	a	little	bit	of	a	new	concept	to	you,	passing	functions	around	as	parameters,	so	if	you	need
to	stop	for	a	minute	there,	wait	and	let	that	sink	in,	play	around	with	it,	please	feel	free	to	do	so.	Again,	I
encourage	you	to	stop	and	take	this	at	your	own	pace.





Lambda	functions	-	functional	programming
One	more	thing	that's	kind	of	a	Python-ish	sort	of	a	thing	to	do,	which	you	might	not	see	in	other	languages
is	the	concept	of	lambda	functions,	and	it's	kind	of	called	functional	programming.	The	idea	is	that	you
can	include	a	simple	function	into	a	function.	This	makes	the	most	sense	with	an	example:

#Lambda	functions	let	you	inline	simple	functions

print	(DoSomething(lambda	x:	x	*	x	*	x,	3))

The	output	of	the	above	code	is	as	follows:

27

We'll	print	DoSomething,	and	remember	that	our	first	parameter	is	a	function,	so	instead	of	passing	in	a
named	function,	I	can	declare	this	function	inline	using	the	lambda	keyword.	Lambda	basically	means	that
I'm	defining	an	unnamed	function	that	just	exists	for	now.	It's	transitory,	and	it	takes	a	parameter	x.	In	the
syntax	here,	lambda	means	I'm	defining	an	inline	function	of	some	sort,	followed	by	its	parameter	list.	It	has
a	single	parameter,	x,	and	the	colon,	followed	by	what	that	function	actually	does.	I'll	take	the	x	parameter
and	multiply	it	by	itself	three	times	to	basically	get	the	cube	of	a	parameter.

In	this	example,	DoSomething	will	pass	in	this	lambda	function	as	the	first	parameter,	which	computes	the
cube	of	x	and	the	3	parameter.	So	what's	this	really	doing	under	the	hood?	This	lambda	function	is	a	function
of	itself	that	gets	passed	into	the	f	in	DoSomething	in	the	previous	example,	and	x	here	is	going	to	be	3.	This
will	return	f	of	x,	which	will	end	up	executing	our	lambda	function	on	the	value	3.	So	that	3	goes	into	our	x
parameter,	and	our	lambda	function	transforms	that	into	3	times	3	times	3,	which	is,	of	course,	27.

Now	this	comes	up	a	lot	when	we	start	doing	MapReduce	and	Spark	and	things	like	that.	So	if	we'll	be
dealing	with	Hadoop	sorts	of	technologies	later	on,	this	is	a	very	important	concept	to	understand.	Again,
I	encourage	you	to	take	a	moment	to	let	that	sink	in	and	understand	what's	going	on	there	if	you	need	to.





Understanding	boolean	expressions
Boolean	expression	syntax	is	a	little	bit	weird	or	unusual,	at	least	in	Python:	print	(1	==	3)

The	output	of	the	above	code	is	as	follows:

False

As	usual,	we	have	the	double	equal	symbol	that	can	test	for	equality	between	two	values.	So	does	1	equal
3,	no	it	doesn't,	therefore	False.	The	value	False	is	a	special	value	designated	by	F.	Remember	that	when
you're	trying	to	test,	when	you're	doing	Boolean	stuff,	the	relevant	keywords	are	True	with	a	T	and	False
with	an	F.	That's	a	little	bit	different	from	other	languages	that	I've	worked	with,	so	keep	that	in	mind.

print	(True	or	False)

The	output	of	the	above	code	is	as	follows:

True

Well,	True	or	False	is	True,	because	one	of	them	is	True,	you	run	it	and	it	comes	back	True.



False

The	other	thing	we	can	do	is	use	is,	which	is	sort	of	the	same	thing	as	equal.	It's	a	more
Python-ish	representation	of	equality,	so	1	==	3	is	the	same	thing	as	1	is	3,	but	this	is
considered	the	more	Pythonic	way	of	doing	it.	So	1	is	3	comes	back	as	False	because	1
is	not	3.



All	is	well	with	the	world

We	can	also	do	if-else	and	else-if	blocks	here	too.	Let's	do	something	a	little	bit	more
complicated	here.	If	1	is	3,	I	would	print	How	did	that	happen?	But	of	course	1	is	not
3,	so	we	will	fall	back	down	to	the	else-if	block,	otherwise,	if	1	is	not	3,	we'll	test	if	1	>
3.	Well	that's	not	true	either,	but	if	it	did,	we	print	Yikes,	and	we	will	finally	fall	into	this
catch-all	else	clause	that	will	print	All	is	well	with	the	world.

In	fact,	1	is	not	3,	nor	is	1	greater	than	3,	and	sure	enough,	All	is	well	with	the
world.	So,	you	know,	other	languages	have	very	similar	syntax,	but	these	are	the
peculiarities	of	Python	and	how	to	do	an	if-else	or	else-if	block.	So	again,	feel	free	to
keep	this	notebook	around.	It	might	be	a	good	reference	later	on.





Looping
The	last	concept	I	want	to	cover	in	our	Python	basics	is	looping,	and	we	saw	a	couple	of	examples	of	this
already,	but	let's	just	do	another	one:	for	x	in	range(10):
print	(x),

The	output	of	the	previous	code	is	as	follows:

0	1	2	3	4	5	6	7	8	9

For	example,	we	can	use	this	range	operator	to	automatically	define	a	list	of	numbers	in	the	range.	So	if
we	say	for	x	in	range(10),	range	10	will	produce	a	list	of	0	through	9,	and	by	saying	for	x	in	that	list,	we	will
iterate	through	every	individual	entry	in	that	list	and	print	it	out.	Again,	the	comma	after	the	print	statement
says	don't	give	me	a	new	line,	just	keep	on	going.	So	the	output	of	this	ends	up	being	all	the	elements	of
that	list	printed	next	to	each	other.

To	do	something	a	little	bit	more	complicated,	we'll	do	something	similar,	but	this	time	we'll	show	how
continue	and	break	work.	As	in	other	languages,	you	can	actually	choose	to	skip	the	rest	of	the	processing
for	a	loop	iteration,	or	actually	stop	the	iteration	of	the	loop	prematurely:	for	x	in	range(10):
if	(x	is	1):
continue
if	(x	>	5):
break
print	(x),

The	output	of	the	above	code	is	as	follows:

0	2	3	4	5

In	this	example,	we'll	go	through	the	values	0	through	9,	and	if	we	hit	on	the	number	1,	we	will	continue
before	we	print	it	out.	We'll	skip	the	number	1,	basically,	and	if	the	number	is	greater	than	5,	we'll	break
the	loop	and	stop	the	processing	entirely.	The	output	that	we	expect	is	that	we	will	print	out	the	numbers	0
through	5,	unless	it's	1,	in	which	case,	we'll	skip	number	1,	and	sure	enough,	that's	what	it	does.





The	while	loop
Another	syntax	is	the	while	loop.	This	is	kind	of	a	standard	looping	syntax	that	you	see	in	most	languages:
x	=	0
while	(x	<	10):
print	(x),
x	+=	1

The	output	of	the	previous	code	is	as	follows:

0	1	2	3	4	5	6	7	8	9

We	can	also	say,	start	with	x	=	0,	and	while	(x	<	10):,	print	it	out	and	then	increment	x	by	1.	This	will	go
through	over	and	over	again,	incrementing	x	until	it's	less	than	10,	at	which	point	we	break	out	of	the	while
loop	and	we're	done.	So	it	does	the	same	thing	as	this	first	example	here,	but	just	in	a	different	style.	It
prints	out	the	numbers	0	through	9	using	a	while	loop.	Just	some	examples	there,	nothing	too	complicated.
Again,	if	you've	done	any	sort	of	programming	or	scripting	before,	this	should	be	pretty	simple.

Now	to	really	let	this	sink	in,	I've	been	saying	throughout	this	entire	chapter,	get	in	there,	get	your	hands
dirty,	and	play	with	it.	So	I'm	going	to	make	you	do	that.





Exploring	activity
Here's	an	activity,	a	little	bit	of	a	challenge	for	you:

Here's	a	nice	little	code	block	where	you	can	start	writing	your	own	Python	code,	run	it,	and	play	around
with	it,	so	please	do	so.	Your	challenge	is	to	write	some	code	that	creates	a	list	of	integers,	loops	through
each	element	of	that	list,	pretty	easy	so	far,	and	only	prints	out	even	numbers.

Now	this	shouldn't	be	too	hard.	There	are	examples	in	this	notebook	of	doing	all	that	stuff;	all	you	have	to
do	is	put	it	together	and	get	it	to	run.	So,	the	point	is	not	to	give	you	something	that's	hard.	I	just	want	you
to	actually	get	some	confidence	in	writing	your	own	Python	code	and	actually	running	it	and	seeing	it
operate,	so	please	do	so.	I	definitely	encourage	you	to	be	interactive	here.	So	have	at	it,	good	luck,	and
welcome	to	Python.

So	that's	your	Python	crash	course,	obviously,	just	some	very	basic	stuff	there.	As	we	go	through	more	and
more	examples	throughout	the	book,	it'll	make	more	and	more	sense	since	you	have	more	examples	to
look	at,	but	if	you	do	feel	a	little	bit	intimidated	at	this	point,	maybe	you're	a	little	bit	too	new	to
programming	or	scripting,	and	it	might	be	a	good	idea	to	go	and	take	a	Python	revision	before	moving
forward,	but	if	you	feel	pretty	good	about	what	you've	seen	so	far,	let's	move	ahead	and	we'll	keep	on
going.





Running	Python	scripts
Throughout	this	book,	we'll	be	using	the	IPython/Jupyter	Notebook	format	(which	are	.ipynb	files)	that
we've	been	looking	at	so	far,	and	it's	a	great	format	for	a	book	like	this	because	it	lets	me	put	little	blocks
of	code	in	there	and	put	a	little	text	and	things	around	it	explaining	what	it's	doing,	and	you	can	experiment
with	things	live.

Of	course,	it's	great	from	that	standpoint,	but	in	the	real	world,	you're	probably	not	going	to	be	using
IPython/Jupyter	Notebooks	to	actually	run	your	Python	scripts	in	production,	so	let	me	just	really	briefly
go	through	the	other	ways	you	can	run	Python	code,	and	other	interactive	ways	of	running	Python	code	as
well.	So	it's	a	pretty	flexible	system.	Let's	take	a	look.

	





More	options	than	just	the	IPython/Jupyter
Notebook
I	want	to	make	sure	that	you	know	there's	more	than	one	way	to	run	Python	code.	Now,	throughout	this
book,	we'll	be	using	the	IPython/Jupyter	Notebook	format	but	in	the	real	world,	you're	not	going	to	be
running	your	code	as	a	notebook.	You're	going	to	be	running	it	as	a	standalone	Python	script.	So	I	just
want	to	make	sure	you	know	how	to	do	that	and	see	how	it	works.

So	let's	go	back	to	this	first	example	that	we	ran	in	the	book,	just	to	illustrate	the	importance	of
whitespace.	We	can	just	select	and	copy	that	code	out	of	the	notebook	format	and	paste	it	into	a	new	file.

This	can	be	done	by	clicking	on	the	New	button	at	the	extreme	left.	So	let's	make	a	new	file	and	paste	it	in
and	let's	save	this	file	and	call	it,	test.py,	where	py	is	the	usual	extension	that	we	give	to	Python	scripts.
Now,	I	can	run	this	in	a	few	different	ways.





Running	Python	scripts	in	command	prompt
I	can	actually	run	the	script	in	a	command	prompt.	If	I	go	to	Tools,	I	can	go	to	Canopy	Command	Prompt,
and	that	will	open	up	a	command	window	that	has	all	the	necessary	environment	variables	already	in
place	for	running	Python.	I	can	just	type	python	test.py	and	run	the	script,	and	out	comes	my	result:	

So	in	the	real	world,	you'd	probably	do	something	like	that.	It	might	be	on	a	Crontab	or	something	like
that,	who	knows?	But	running	a	real	script	in	production	is	just	that	simple.	You	can	now	close	the
command	prompt.





Using	the	Canopy	IDE
Moving	back,	I	can	also	run	the	script	from	within	the	IDE.	So	from	within	Canopy,	I	can	go	to	the	Run
menu.	I	can	either	go	to	Run	|	Run	File,	or	click	on	the	little	play	icon,	and	that	will	also	execute	my
script,	and	see	the	results	at	the	bottom	in	the	output	window,	as	shown	in	the	following	screenshot:

So	that's	another	way	to	do	it,	and	finally,	you	can	also	run	scripts	within	this	interactive	prompt	present	at
the	bottom	interactively.	I	can	actually	type	in	Python	commands	one	at	a	time	down,	and	have	them	just
execute	and	stay	within	the	environment	down	there:

For	example,	I	could	say	stuff,	make	it	a	list	call,	and	have	1,	2,	3,	4,	and	now	I	can	say	len(stuff),	and	that
will	give	me	4:



I	can	say,	for	x	in	stuff:print	x,	and	we	get	output	as	1	2	3	4:

So	you	can	see	you	can	kind	of	makeup	scripts	as	you	go	down	in	the	interactive	prompt	at	the	bottom	and
execute	things	one	thing	at	a	time.	In	this	example,	stuff	is	a	variable	we	created,	a	list	that	stays	in
memory,	it's	kind	of	like	a	global	variable	in	other	languages	within	this	environment.

Now	if	I	do	want	to	reset	this	environment,	if	I	want	to	get	rid	of	stuff	and	start	all	over,	the	way	you	do
that	is	you	go	up	to	the	Run	menu	here	and	you	can	say	Restart	Kernel,	and	that	will	strike	you	over	with	a
blank	slate:

So	now	I	have	a	new	Python	environment	that's	a	clean	slate,	and	in	this	case,	what	did	I	call	it?	Type
stuff	and	stuff	doesn't	exist	yet	because	I	have	a	new	environment,	but	I	can	make	it	something	else,	such
as	[4,	5,	6];	run	it	and	there	it	is:



So	there	you	have	it,	three	ways	of	running	Python	code:	the	IPython/Jupyter	Notebook,	which	we'll	use
throughout	this	book	just	because	it's	a	good	learning	tool,	you	can	also	run	scripts	as	standalone	script
files,	and	you	can	also	execute	Python	code	in	the	interactive	command	prompt.

So	there	you	have	it,	and	there	you	have	three	different	ways	of	running	Python	code	and	experimenting
and	running	things	in	production.	So	keep	that	in	mind.	We'll	be	using	notebooks	throughout	the	rest	of	this
book,	but	again,	you	have	those	other	options	when	the	time	comes.





Summary
In	this	chapter,	we	started	our	journey	with	building	the	most	important	stepping	stone	of	the	book	-
Installing	Enthought	Canopy.	We	then	moved	to	installing	other	libraries	and	installing	different	types	of
packages.	We	also	grasped	some	of	the	basics	of	Python	with	the	help	of	various	Python	code.	We
covered	basic	concepts	such	as	modules,	lists	along	with	Tuples,	and	eventually	moved	on	to
understanding	more	of	Python	basics	with	a	better	knowledge	of	functions	and	looping	in	Python.	Finally,
we	started	with	running	some	of	our	simple	Python	scripts.

In	the	next	chapter,	we	will	move	on	to	understand	concepts	of	statistics	and	probability.

	



	



Statistics	and	Probability	Refresher,	and	Python
Practice
	

In	this	chapter,	we	are	going	to	go	through	a	few	concepts	of	statistics	and	probability,	which	might	be	a
refresher	for	some	of	you.	These	concepts	are	important	to	go	through	if	you	want	to	be	a	data	scientist.
We	will	see	examples	to	understand	these	concepts	better.	We	will	also	look	at	how	to	implement	those
examples	using	actual	Python	code.

We'll	be	covering	the	following	topics	in	this	chapter:

Types	of	data	you	may	encounter	and	how	to	treat	them	accordingly
Statistical	concepts	of	mean,	median,	mode,	standard	deviation,	and	variance
Probability	density	functions	and	probability	mass	functions
Types	of	data	distributions	and	how	to	plot	them
Understanding	percentiles	and	moments

	

	





Types	of	data
Alright,	if	you	want	to	be	a	data	scientist,	we	need	to	talk	about	the	types	of	data	that	you	might	encounter,
how	to	categorize	them,	and	how	you	might	treat	them	differently.	Let's	dive	into	the	different	flavors	of
data	you	might	encounter:

This	will	seem	pretty	basic,	but	we've	got	to	start	with	the	simple	stuff	and	we'll	work	our	way	up	to	the
more	complicated	data	mining	and	machine	learning	things.	It	is	important	to	know	what	kind	of	data
you're	dealing	with	because	different	techniques	might	have	different	nuances	depending	on	what	kind	of
data	you're	handling.	So,	there	are	several	flavors	of	data,	if	you	will,	and	there	are	three	specific	types	of
data	that	we	will	primarily	focus	on.	They	are:

Numerical	data
Categorical	data
Ordinal	data

Again,	there	are	different	variations	of	techniques	that	you	might	use	for	different	types	of	data,	so	you
always	need	to	keep	in	mind	what	kind	of	data	you're	dealing	with	when	you're	analyzing	it.





Numerical	data
Let's	start	with	numerical	data.	It's	probably	the	most	common	data	type.	Basically,	it	represents	some
quantifiable	thing	that	you	can	measure.	Some	examples	are	heights	of	people,	page	load	times,	stock
prices,	and	so	on.	Things	that	vary,	things	that	you	can	measure,	things	that	have	a	wide	range	of
possibilities.	Now	there	are	basically	two	kinds	of	numerical	data,	so	a	flavor	of	a	flavor	if	you	will.

	





Discrete	data
There's	discrete	data,	which	is	integer-based	and,	for	example,	can	be	counts	of	some	sort	of	event.	Some
examples	are	how	many	purchases	did	a	customer	make	in	a	year.	Well,	that	can	only	be	discrete	values.
They	bought	one	thing,	or	they	bought	two	things,	or	they	bought	three	things.	They	couldn't	have	bought,
2.25	things	or	three	and	three-quarters	things.	It's	a	discrete	value	that	has	an	integer	restriction	to	it.

	





Continuous	data
The	other	type	of	numerical	data	is	continuous	data,	and	this	is	stuff	that	has	an	infinite	range	of
possibilities	where	you	can	go	into	fractions.	So,	for	example,	going	back	to	the	height	of	people,	there	is
an	infinite	number	of	possible	heights	for	people.	You	could	be	five	feet	and	10.37625	inches	tall,	or	the
time	it	takes	to	do	something	like	check	out	on	a	website	could	be	any	huge	range	of	possibilities,	10.7625
seconds	for	all	you	know,	or	how	much	rainfall	in	a	given	day.	Again,	there's	an	infinite	amount	of
precision	there.	So	that's	an	example	of	continuous	data.

To	recap,	numerical	data	is	something	you	can	measure	quantitatively	with	a	number,	and	it	can	be	either
discrete,	where	it's	integer-based	like	an	event	count,	or	continuous,	where	you	can	have	an	infinite	range
of	precision	available	to	that	data.

	





Categorical	data
The	second	type	of	data	that	we're	going	to	talk	about	is	categorical	data,	and	this	is	data	that	has	no
inherent	numeric	meaning.

Most	of	the	time,	you	can't	really	compare	one	category	to	another	directly.	Things	like	gender,	yes/no
questions,	race,	state	of	residence,	product	category,	political	party;	you	can	assign	numbers	to	these
categories,	and	often	you	will,	but	those	numbers	have	no	inherent	meaning.

So,	for	example,	I	can	say	that	the	area	of	Texas	is	greater	than	the	area	of	Florida,	but	I	can't	just	say
Texas	is	greater	than	Florida,	they're	just	categories.	There's	no	real	numerical	quantifiable	meaning	to
them,	it's	just	ways	that	we	categorize	different	things.

Now	again,	I	might	have	some	sort	of	numerical	assignation	to	each	state.	I	mean,	I	could	say	that	Florida
is	state	number	3	and	Texas	state	number	4,	but	there's	no	real	relationship	between	3	and	4	there,	right,
it's	just	a	shorthand	to	more	compactly	represent	these	categories.	So	again,	categorical	data	does	not
have	any	intrinsic	numerical	meaning;	it's	just	a	way	that	you're	choosing	to	split	up	a	set	of	data	based	on
categories.





Ordinal	data
The	last	category	that	you	tend	to	hear	about	with	types	of	data	is	ordinal	data,	and	it's	sort	of	a	mixture	of
numerical	and	categorical	data.	A	common	example	is	star	ratings	for	a	movie	or	music,	or	what	have
you.

In	this	case,	we	have	categorical	data	in	that	could	be	1	through	5	stars,	where	1	might	represent	poor	and
5	might	represent	excellent,	but	they	do	have	mathematical	meaning.	We	do	know	that	5	means	it's	better
than	a	1,	so	this	is	a	case	where	we	have	data	where	the	different	categories	have	a	numerical	relationship
to	each	other.	So,	I	can	say	that	1	star	is	less	than	5	stars,	I	can	say	that	2	stars	is	less	than	3	stars,	I	can
say	that	4	stars	is	greater	than	2	stars	in	terms	of	a	measure	of	quality.	Now	you	could	also	think	of	the
actual	number	of	stars	as	discrete	numerical	data.	So,	it's	definitely	a	fine	line	between	these	categories,
and	in	a	lot	of	cases	you	can	actually	treat	them	interchangeably.

So,	there	you	have	it,	the	three	different	types.	There	is	numerical,	categorical,	and	ordinal	data.	Let's	see
if	it's	sunk	in.	Don't	worry,	I'm	not	going	to	make	you	hand	in	your	work	or	anything.

Quick	quiz:	For	each	of	these	examples,	is	the	data	numerical,	categorical,	or	ordinal?

1.	 Let's	start	with	how	much	gas	is	in	your	gas	tank.	What	do	you	think?	Well,	the	right	answer	is
numerical.	It's	a	continuous	numerical	value	because	you	can	have	an	infinite	range	of	possibilities
of	gas	in	your	tank.	I	mean,	yeah,	there's	probably	some	upper	bound	of	how	much	gas	you	can	fit	in
it,	but	there	is	no	end	to	the	number	of	possible	values	of	how	much	gas	you	have.	It	could	be	three
quarters	of	a	tank,	it	could	be	seven	sixteenths	of	the	tank,	it	could	be	1/pi	of	a	tank,	I	mean	who
knows,	right?

	

2.	 How	about	if	you're	reading	your	overall	health	on	a	scale	of	1	to	4,	where	those	choices	correspond
to	the	categories	poor,	moderate,	good,	and	excellent?	What	do	you	think?	That's	a	good	example	of
ordinal	data.	That's	very	much	like	our	movie	ratings	data,	and	again,	depending	on	how	you	model
that,	you	could	probably	treat	it	as	discrete	numerical	data	as	well,	but	technically	we're	going	to
call	that	ordinal	data.

3.	 What	about	the	races	of	your	classmates?	This	is	a	pretty	clear	example	of	categorical	data.	You
can't	really	compare	purple	people	to	green	people,	right,	they're	just	purple	and	green,	but	they	are



categories	that	you	might	want	to	study	and	understand	the	differences	between	on	some	other
dimension.

4.	 How	about	the	ages	of	your	classmates	in	years?	A	little	bit	of	a	trick	question	there;	if	I	said	it	had
to	be	in	an	integer	value	of	years,	like	40,	50,	or	55	years	old,	then	that	would	be	discrete	numerical
data,	but	if	I	had	more	precision,	like	40	years	three	months	and	2.67	days,	that	would	be	continuous
numerical	data,	but	either	way,	it's	a	numerical	data	type.

5.	 And	finally,	money	spent	in	a	store.	Again,	that	could	be	an	example	of	continuous	numerical	data.
So	again,	this	is	only	important	because	you	might	apply	different	techniques	to	different	types	of
data.

There	might	be	some	concepts	where	we	do	one	type	of	implementation	for	categorical	data	and	a
different	type	of	implementation	for	numerical	data,	for	example.

So	that's	all	you	need	to	know	about	the	different	types	of	data	that	you'll	commonly	find,	and	that	we'll
focus	on	in	this	book.	They're	all	pretty	simple	concepts:	you've	got	numeric,	categorical,	and	ordinal
data,	and	numerical	data	can	be	continuous	or	discrete.	There	might	be	different	techniques	you	apply	to
the	data	depending	on	what	kind	of	data	you're	dealing	with,	and	we'll	see	that	throughout	the	book.	Let's
move	on.





Mean,	median,	and	mode
Let's	do	a	little	refresher	of	statistics	101.	This	is	like	elementary	school	stuff,	but	good	to	go	through	it
again	and	see	how	these	different	techniques	are	used:	Mean,	median,	and	mode.	I'm	sure	you've	heard
those	terms	before,	but	it's	good	to	see	how	they're	used	differently,	so	let's	dive	in.

This	should	be	a	review	for	most	of	you,	a	quick	refresher,	now	that	we're	starting	to	actually	dive	into
some	real	statistics.	Let's	look	at	some	actual	data	and	figure	out	how	to	measure	these	things.

	





Mean
The	mean,	as	you	probably	know,	is	just	another	name	for	the	average.	To	calculate	the	mean	of	a	dataset,
all	you	have	to	do	is	sum	up	all	the	values	and	divide	it	by	the	number	of	values	that	you	have.

Sum	of	samples/Number	of	samples

Let's	take	this	example,	which	calculates	the	mean	(average)	number	of	children	per	house	in	my
neighborhood.

Let's	say	I	went	door-to-door	in	my	neighborhood	and	asked	everyone,	how	many	children	live	in	their
household.	(That,	by	the	way,	is	a	good	example	of	discrete	numerical	data;	remember	from	the	previous
section?)	Let's	say	I	go	around	and	I	found	out	that	the	first	house	has	no	kids	in	it,	and	the	second	house
has	two	children,	and	the	third	household	has	three	children,	and	so	on	and	so	forth.	I	amassed	this	little
dataset	of	discrete	numerical	data,	and	to	figure	out	the	mean,	all	I	do	is	add	them	all	together	and	divide
it	by	the	number	of	houses	that	I	went	to.

Number	of	children	in	each	house	on	my	street:

0,	2,	3,	2,	1,	0,	0,	2,	0

The	mean	is	(0+2+3+2+1+0+0+2+0)/9	=	1.11

It	comes	out	as	0	plus	2	plus	3	plus	all	the	rest	of	these	numbers	divided	by	the	total	number	of	houses	that
I	looked	at,	which	is	9,	and	the	mean	number	of	children	per	house	in	my	sample	is	1.11.	So,	there	you
have	it,	mean.





Median
Median	is	a	little	bit	different.	The	way	you	compute	the	median	of	the	dataset	is	by	sorting	all	the	values
(in	either	ascending	or	descending	order),	and	taking	the	one	that	ends	up	in	the	middle.

So,	for	example,	let's	use	the	same	dataset	of	children	in	my	neighborhood	0,	2,	3,	2,	1,	0,	0,	2,	0

I	would	sort	it	numerically,	and	I	can	take	the	number	that's	slap	dab	in	the	middle	of	the	data,	which	turns
out	to	be	1.

0,	0,	0,	0,	1,	2,	2,	2,	3

Again,	all	I	do	is	take	the	data,	sort	it	numerically,	and	take	the	center	point.

If	you	have	an	even	number	of	data	points,	then	the	median	might	actually	fall	in	between
two	data	points.	It	wouldn't	be	clear	which	one	is	actually	the	middle.	In	that	case,	all
you	do	is,	take	the	average	of	the	two	that	do	fall	in	the	middle	and	consider	that	number
as	the	median.





The	factor	of	outliers
Now	in	the	preceding	example	of	the	number	of	kids	in	each	household,	the	median	and	the	mean	were
pretty	close	to	each	other	because	there	weren't	a	lot	of	outliers.	We	had	0,	1,	2,	or	3	kids,	but	we	didn't
have	some	wacky	family	that	had	100	kids.	That	would	have	really	skewed	the	mean,	but	it	might	not	have
changed	the	median	too	much.	That's	why	the	median	is	often	a	very	useful	thing	to	look	at	and	often
overlooked.

Median	is	less	susceptible	to	outliers	than	the	mean.

People	have	a	tendency	to	mislead	people	with	statistics	sometimes.	I'm	going	to	keep	pointing	this	out
throughout	the	book	wherever	I	can.

For	example,	you	can	talk	about	the	mean	or	average	household	income	in	the	United	States,	and	that
actual	number	from	last	year	when	I	looked	it	up	was	$72,000	or	so,	but	that	doesn't	really	provide	an
accurate	picture	of	what	the	typical	American	makes.	That	is	because,	if	you	look	at	the	median	income,
it's	much	lower	at	$51,939.	Why	is	that?	Well,	because	of	income	inequality.	There	are	a	few	very	rich
people	in	America,	and	the	same	is	true	in	a	lot	of	countries	as	well.	America's	not	even	the	worst,	but
you	know	those	billionaires,	those	super-rich	people	that	live	on	Wall	Street	or	Silicon	Valley	or	some
other	super-rich	place,	they	skew	the	mean.	But	there's	so	few	of	them	that	they	don't	really	affect	the
median	so	much.

This	is	a	great	example	of	where	the	median	tells	a	much	better	story	about	the	typical	person	or	data
point	in	this	example	than	the	mean	does.	Whenever	someone	talks	about	the	mean,	you	have	to	think	about
what	does	the	data	distribution	looks	like.	Are	there	outliers	that	might	be	skewing	that	mean?	And	if	the
answer	is	potentially	yes,	you	should	also	ask	for	the	median,	because	often,	that	provides	more	insight
than	the	mean	or	the	average.





Mode
Finally,	we'll	talk	about	mode.	This	doesn't	really	come	up	too	often	in	practice,	but	you	can't	talk	about
mean	and	median	without	talking	about	mode.	All	mode	means,	is	the	most	common	value	in	a	dataset.

Let's	go	back	to	my	example	of	the	number	of	kids	in	each	house.

0,	2,	3,	2,	1,	0,	0,	2,	0

How	many	of	each	value	are	there:

0:	4,	1:	1,	2:	3,	3:	1

The	MODE	is	0

If	I	just	look	at	what	number	occurs	most	frequently,	it	turns	out	to	be	0,	and	the	mode	therefore	of	this
data	is	0.	The	most	common	number	of	children	in	a	given	house	in	this	neighborhood	is	no	kids,	and	that's
all	that	means.

Now	this	is	actually	a	pretty	good	example	of	continuous	versus	discrete	data,	because	this	only	really
works	with	discrete	data.	If	I	have	a	continuous	range	of	data	then	I	can't	really	talk	about	the	most
common	value	that	occurs,	unless	I	quantize	that	somehow	into	discrete	values.	So	we've	already	run	into
one	example	here	where	the	data	type	matters.

Mode	is	usually	only	relevant	to	discrete	numerical	data,	and	not	to	continuous	data.

A	lot	of	real-world	data	tends	to	be	continuous,	so	maybe	that's	why	I	don't	hear	too	much	about	mode,	but
we	see	it	here	for	completeness.

There	you	have	it:	mean,	median,	and	mode	in	a	nutshell.	Kind	of	the	most	basic	statistics	stuff	you	can
possibly	do,	but	I	hope	you	gained	a	little	refresher	there	in	the	importance	of	choosing	between	median
and	mean.	They	can	tell	very	different	stories,	and	yet	people	tend	to	equate	them	in	their	heads,	so	make
sure	you're	being	a	responsible	data	scientist	and	representing	data	in	a	way	that	conveys	the	meaning
you're	trying	to	represent.	If	you're	trying	to	display	a	typical	value,	often	the	median	is	a	better	choice
than	the	mean	because	of	outliers,	so	remember	that.	Let's	move	on.





Using	mean,	median,	and	mode	in	Python
Let's	start	doing	some	real	coding	in	Python	and	see	how	you	compute	the	mean,	median,	and	mode	using
Python	in	an	IPython	Notebook	file.

So	go	ahead	and	open	up	the	MeanMedianMode.ipynb	file	from	the	data	files	for	this	section	if	you'd	like	to
follow	along,	which	I	definitely	encourage	you	to	do.	If	you	need	to	go	back	to	that	earlier	section	on
where	to	download	these	materials	from,	please	go	do	that,	because	you	will	need	these	files	for	the
section.	Let's	dive	in!

	





Calculating	mean	using	the	NumPy	package
What	we're	going	to	do	is	create	some	fake	income	data,	getting	back	to	our	example	from	the	previous
section.	We're	going	to	create	some	fake	data	where	the	typical	American	makes	around	$27,000	a	year	in
this	example,	we're	going	to	say	that's	distributed	with	a	normal	distribution	and	a	standard	deviation	of
15,000.	All	numbers	are	completely	made	up,	and	if	you	don't	know	what	normal	distribution	and
standard	deviation	means	yet,	don't	worry.	I'm	going	to	cover	that	a	little	later	in	the	chapter,	but	I	just
want	you	to	know	what	these	different	parameters	represent	in	this	example.	It	will	make	sense	later	on.

In	our	Python	notebook,	remember	to	import	the	NumPy	package	into	Python,	which	makes	computing
mean,	median,	and	mode	really	easy.	We're	going	to	use	the	import	numpy	as	np	directive,	which	means	we
can	use	np	as	a	shorthand	to	call	numpy	from	now	on.

Then	we're	going	to	create	a	list	of	numbers	called	incomes	using	the	np.random.normal	function.

import	numpy	as	np	

	

incomes	=	np.random.normal(27000,	15000,	10000)	

np.mean(incomes)	

The	three	parameters	of	the	np.random.normal	function	mean	I	want	the	data	centered	around	27000,	with	a
standard	deviation	of	15000,	and	I	want	python	to	make	10000	data	points	in	this	list.

Once	I	do	that,	I	compute	the	average	of	those	data	points,	or	the	mean	by	just	calling	np.mean	on	incomes
which	is	my	list	of	data.	It's	just	that	simple.

Let's	go	ahead	and	run	that.	Make	sure	you	selected	that	code	block	and	then	you	can	hit	the	play	button	to
actually	execute	it,	and	since	there	is	a	random	component	to	these	income	numbers,	every	time	I	run	it,
I'm	going	to	get	a	slightly	different	result,	but	it	should	always	be	pretty	close	to	27000.

Out[1]:	27173.098561362742

OK,	so	that's	all	there	is	to	computing	the	mean	in	Python,	just	using	NumPy	(np.mean)	makes	it	super	easy.
You	don't	have	to	write	a	bunch	of	code	or	actually	add	up	everything	and	count	up	how	many	items	you
had	and	do	the	division.	NumPy	mean,	does	all	that	for	you.





Visualizing	data	using	matplotlib
Let's	visualize	this	data	to	make	it	make	a	little	more	sense.	So	there's	another	package	called	matplotlib,
and	again	we're	going	to	talk	about	that	a	lot	more	in	the	future	as	well,	but	it's	a	package	that	lets	me
make	pretty	graphs	in	IPython	Notebooks,	so	it's	an	easy	way	to	visualize	your	data	and	see	what's	going
on.

In	this	example,	we	are	using	matplotlib	to	create	a	histogram	of	our	income	data	broken	up	into	50	different
buckets.	So	basically,	we're	taking	our	continuous	data	and	discretizing	it,	and	then	we	can	call	show	on
matplotlib.pyplot	to	actually	display	this	histogram	in	line.	Refer	to	the	following	code:

%matplotlib	inline	

import	matplotlib.pyplot	as	plt	

plt.hist(incomes,	50)	

plt.show()	

Go	ahead	and	select	the	code	block	and	hit	play.	It	will	actually	create	a	new	graph	for	us	as	follows:

If	you're	not	familiar	with	histograms	or	you	need	a	refresher,	the	way	to	interpret	this	is	that	for	each	one
of	these	buckets	that	we've	discretized	our	data	into	is	showing	the	frequency	of	that	data.

So,	for	example,	around	27,000-ish	we	see	there's	about	600	data	points	in	that	neighborhood	for	each
given	range	of	values.	There's	a	lot	of	people	around	the	27,000	mark,	but	when	you	get	over	to	outliers
like	80,000,	there	is	not	a	whole	lot,	and	apparently	there's	some	poor	souls	that	are	even	in	debt	at
-40,000,	but	again,	they're	very	rare	and	not	probable	because	we	defined	a	normal	distribution,	and	this
is	what	a	normal	probability	curve	looks	like.	Again,	we're	going	to	talk	about	that	more	in	detail	later,
but	I	just	want	to	get	that	idea	in	your	head	if	you	don't	already	know	it.





Calculating	median	using	the	NumPy	package
Alright,	so	computing	the	median	is	just	as	simple	as	computing	the	mean.	Just	like	we	had	NumPy	mean,
we	have	a	NumPy	median	function	as	well.

We	can	just	use	the	median	function	on	incomes,	which	is	our	list	of	data,	and	that	will	give	us	the	median.	In
this	case,	that	came	up	to	$26,911,	which	isn't	very	different	from	the	mean	of	$26988.	Again,	the	initial
data	was	random,	so	your	values	will	be	slightly	different.

np.median(incomes)	

The	following	is	the	output	of	the	preceding	code:

Out[4]:	26911.948365056276	

We	don't	expect	to	see	a	lot	of	outliers	because	this	is	a	nice	normal	distribution.	Median	and	mean	will
be	comparable	when	you	don't	have	a	lot	of	weird	outliers.





Analyzing	the	effect	of	outliers
Just	to	prove	a	point,	let's	add	in	an	outlier.	We'll	take	Donald	Trump;	I	think	he	qualifies	as	an	outlier.
Let's	go	ahead	and	add	his	income	in.	So	I'm	going	to	manually	add	this	to	the	data	using	np.append,	and	let's
say	add	a	billion	dollars	(which	is	obviously	not	the	actual	income	of	Donald	Trump)	into	the	incomes
data.

incomes	=	np.append(incomes,	[1000000000])	

What	we're	going	to	see	is	that	this	outlier	doesn't	really	change	the	median	a	whole	lot,	you	know,	that's
still	going	to	be	around	the	same	value	$26,911,	because	we	didn't	actually	change	where	the	middle	point
is,	with	that	one	value,	as	shown	in	the	following	example:

np.median(incomes)	

This	will	output	the	following:

Out[5]:	26911.948365056276	

This	gives	a	new	output	of:

np.mean(incomes)	

The	following	is	the	output	of	the	preceding	code:

Out[5]:127160.38252311043	

Aha,	so	there	you	have	it!	It	is	a	great	example	of	how	median	and	mean,	although	people	tend	to	equate
them	in	commonplace	language,	can	be	very	different,	and	tell	a	very	different	story.	So	that	one	outlier
caused	the	average	income	in	this	dataset	to	be	over	$127160	a	year,	but	the	more	accurate	picture	is
closer	to	27,000	dollars	a	year	for	the	typical	person	in	this	dataset.	We	just	had	the	mean	skewed	by	one
big	outlier.

The	moral	of	the	story	is:	take	anyone	who	talks	about	means	or	averages	with	a	grain	of	salt	if	you
suspect	there	might	be	outliers	involved,	and	income	distribution	is	definitely	a	case	of	that.





Calculating	mode	using	the	SciPy	package
Finally,	let's	look	at	mode.	We	will	just	generate	a	bunch	of	random	integers,	500	of	them	to	be	precise,
that	range	between	18	and	90.	We're	going	to	create	a	bunch	of	fake	ages	for	people.

ages	=	np.random.randint(18,	high=90,	size=500)	

ages	

Your	output	will	be	random,	but	should	look	something	like	the	following	screenshot:

Now,	SciPy,	kind	of	like	NumPy,	is	a	bunch	of	like	handy-dandy	statistics	functions,	so	we	can	import
stats	from	SciPy	using	the	following	syntax.	It's	a	little	bit	different	than	what	we	saw	before.

from	scipy	import	stats	

stats.mode(ages)	

The	code	means,	from	the	scipy	package	import	stats,	and	I'm	just	going	to	refer	to	the	package	as	stats,
Tha	means	that	I	don't	need	to	have	an	alias	like	I	did	before	with	NumPy,	just	different	way	of	doing	it.
Both	ways	work.	Then,	I	used	the	stats.mode	function	on	ages,	which	is	our	list	of	random	ages.	When	we
execute	the	above	code,	we	get	the	following	output:

Out[11]:	ModeResult(mode=array([39]),	count=array([12]))	

So	in	this	case,	the	actual	mode	is	39	that	turned	out	to	be	the	most	common	value	in	that	array.	It	actually



occurred	12	times.

Now	if	I	actually	create	a	new	distribution,	I	would	expect	a	completely	different	answer	because	this
data	really	is	completely	random	what	these	numbers	are.	Let's	execute	the	above	code	blocks	again	to
create	a	new	distribution.

ages	=	np.random.randint(18,	high=90,	size=500)	

ages	

from	scipy	import	stats	

stats.mode(ages)	

The	output	for	randomizing	the	equation	is	as	distribution	is	as	follows:

Make	sure	you	selected	that	code	block	and	then	you	can	hit	the	play	button	to	actually	execute	it.

In	this	case,	the	mode	ended	up	being	the	number	29,	which	occurred	14	times.

Out[11]:	ModeResult(mode=array([29]),	count=array([14]))	

So,	it's	a	very	simple	concept.	You	can	do	it	a	few	more	times	just	for	fun.	It's	kind	of	like	rolling	the
roulette	wheel.	We'll	create	a	new	distribution	again.

There	you	have	it,	mean,	median,	and	mode	in	a	nutshell.	It's	very	simple	to	do	using	the	SciPy	and
NumPy	packages.





Some	exercises
I'm	going	to	give	you	a	little	assignment	in	this	section.	If	you	open	up	MeanMedianExercise.ipynb	file,	there's
some	stuff	you	can	play	with.	I	want	you	to	roll	up	your	sleeves	and	actually	try	to	do	this.

In	the	file,	we	have	some	random	e-commerce	data.	What	this	data	represents	is	the	total	amount	spent	per
transaction,	and	again,	just	like	with	our	previous	example,	it's	just	a	normal	distribution	of	data.	We	can
run	that,	and	your	homework	is	to	go	ahead	and	find	the	mean	and	median	of	this	data	using	the	NumPy
package.	Pretty	much	the	easiest	assignment	you	could	possibly	imagine.	All	the	techniques	you	need	are
in	the	MeanMedianMode.ipynb	file	that	we	used	earlier.

The	point	here	is	not	really	to	challenge	you,	it's	just	to	make	you	actually	write	some	Python	code	and
convince	yourself	that	you	can	actually	get	a	result	and	make	something	happen	here.	So,	go	ahead	and
play	with	that.	If	you	want	to	play	with	it	some	more,	feel	free	to	play	around	with	the	data	distribution
here	and	see	what	effect	you	can	have	on	the	numbers.	Try	adding	some	outliers,	kind	of	like	we	did	with
the	income	data.	This	is	the	way	to	learn	this	stuff:	master	the	basics	and	the	advance	stuff	will	follow.
Have	at	it,	have	fun.

Once	your're	ready,	let's	move	forward	to	our	next	concept,	standard	deviation	and	variance.





Standard	deviation	and	variance
Let's	talk	about	standard	deviation	and	variance.	The	concepts	and	terms	you've	probably	heard	before,
but	let's	go	into	a	little	bit	more	depth	about	what	they	really	mean	and	how	you	compute	them.	It's	a
measure	of	the	spread	of	a	data	distribution,	and	that	will	make	a	little	bit	more	sense	in	a	few	minutes.

Standard	deviation	and	variance	are	two	fundamental	quantities	for	a	data	distribution	that	you'll	see	over
and	over	again	in	this	book.	So,	let's	see	what	they	are,	if	you	need	a	refresher.

	





Variance
Let's	look	at	a	histogram,	because	variance	and	standard	deviation	are	all	about	the	spread	of	the	data,	the
shape	of	the	distribution	of	a	dataset.	Take	a	look	at	the	following	histogram:

Let's	say	that	we	have	some	data	on	the	arrival	frequency	of	airplanes	at	an	airport,	for	example,	and	this
histogram	indicates	that	we	have	around	4	arrivals	per	minute	and	that	happened	on	around	12	days	that
we	looked	at	for	this	data.	However,	we	also	have	these	outliers.	We	had	one	really	slow	day	that	only
had	one	arrival	per	minute,	we	only	had	one	really	fast	day	where	we	had	almost	12	arrivals	per	minute.
So,	the	way	to	read	a	histogram	is	look	up	the	bucket	of	a	given	value,	and	that	tells	you	how	frequently
that	value	occurred	in	your	data,	and	the	shape	of	the	histogram	could	tell	you	a	lot	about	the	probability
distribution	of	a	given	set	of	data.

We	know	from	this	data	that	our	airport	is	very	likely	to	have	around	4	arrivals	per	minute,	but	it's	very
unlikely	to	have	1	or	12,	and	we	can	also	talk	specifically	about	the	probabilities	of	all	the	numbers	in
between.	So	not	only	is	it	unlikely	to	have	12	arrivals	per	minute,	it's	also	very	unlikely	to	have	9	arrivals
per	minute,	but	once	we	start	getting	around	8	or	so,	things	start	to	pick	up	a	little	bit.	A	lot	of	information
can	be	had	from	a	histogram.

Variance	measures	how	spread-out	the	data	is.





Measuring	variance
We	usually	refer	to	variance	as	sigma	squared,	and	you'll	find	out	why	momentarily,	but	for	now,	just
know	that	variance	is	the	average	of	the	squared	differences	from	the	mean.

1.	 To	compute	the	variance	of	a	dataset,	you	first	figure	out	the	mean	of	it.	Let's	say	I	have	some	data
that	could	represent	anything.	Let's	say	maximum	number	of	people	that	were	standing	in	line	for	a
given	hour.	In	the	first	hour,	I	observed	1	person	standing	in	line,	then	4,	then	5,	then	4,	then	8.

2.	 The	first	step	in	computing	the	variance	is	just	to	find	the	mean,	or	the	average,	of	that	data.	I	add
them	all,	divide	the	sum	by	the	number	of	data	points,	and	that	comes	out	to	4.4	which	is	the	average
number	of	people	standing	in	line	(1+4+5+4+8)/5	=	4.4.

3.	 Now	the	next	step	is	to	find	the	differences	from	the	mean	for	each	data	point.	I	know	that	the	mean	is
4.4.	So	for	my	first	data	point,	I	have	1,	so	1	-	4.4	=	-3.4,	The	next	data	point	is	4,	so	4	-	4.4	=	-0.4	4
-	4.4	=	-0.4,	and	so	on	and	so	forth.	OK,	so	I	end	up	with	these	both	positive	and	negative	numbers
that	represent	the	variance	from	the	mean	for	each	data	point	(-3.4,	-0.4,	0.6,	-0.4,	3.6).

4.	 Now	what	I	need	is	a	single	number	that	represents	the	variance	of	this	entire	dataset.	So,	the	next
thing	I'm	going	to	do	is	find	the	square	of	these	differences.	I'm	just	going	to	go	through	each	one	of
those	raw	differences	from	the	mean	and	square	them.	This	is	for	a	couple	of	different	reasons:

First,	I	want	to	make	sure	that	negative	variances.	Count	just	as	much	as	positive	variances.
Otherwise,	they	will	cancel	each	other	out.	That'd	be	bad.
Second,	I	also	want	to	give	more	weight	to	the	outliers,	so	this	amplifies	the	effect	of	things	that
are	very	different	from	the	mean	while	still,	making	sure	that	the	negatives	and	positives	are
comparable	(11.56,	0.16,	0.36,	0.16,	12.96).

Let's	look	at	what	happens	there,	so	(-3.4)2	is	a	positive	11.56	and	(-0.4)2	ends	up	being	a	much	smaller
number,	that	is	0.16,	because	that's	much	closer	to	the	mean	of	4.4.	Also	(0.6)2	turned	out	to	be	close	to
the	mean,	only	0.36.	But	as	we	get	up	to	the	positive	outlier,	(3.6)2	ends	up	being	12.96.	That	gives	us:
(11.56,	0.16,	0.36,	0.16,	12.96).

To	find	the	actual	variance	value,	we	just	take	the	average	of	all	those	squared	differences.	So	we	add	up
all	these	squared	variances,	divide	the	sum	by	5,	that	is	number	of	values	that	we	have,	and	we	end	up
with	a	variance	of	5.04.

OK,	that's	all	variance	is.





Standard	deviation
Now	typically,	we	talk	about	standard	deviation	more	than	variance,	and	it	turns	out	standard	deviation	is
just	the	square	root	of	the	variance.	It's	just	that	simple.

So,	if	I	had	this	variance	of	5.04,	the	standard	deviation	is	2.24.	So	you	see	now	why	we	said	that	the
variance	=	(σ)2.	It's	because	σ	itself	represents	the	standard	deviation.	So,	if	I	take	the	square	root	of	(σ)2,
I	get	sigma.	That	ends	up	in	this	example	to	be	2.24.





Identifying	outliers	with	standard	deviation
Here's	a	histogram	of	the	actual	data	we	were	looking	at	in	the	preceding	example	for	calculating
variance.

Now	we	see	that	the	number	4	occurred	twice	in	our	dataset,	and	then	we	had	one	1,	one	5,	and	one	8.

The	standard	deviation	is	usually	used	as	a	way	to	think	about	how	to	identify	outliers	in	your	dataset.	If	I
say	if	I'm	within	one	standard	deviation	of	the	mean	of	4.4,	that's	considered	to	be	kind	of	a	typical	value
in	a	normal	distribution.	However,	you	can	see	in	the	preceding	diagram,	that	the	numbers	1	and	8	actually
lie	outside	of	that	range.	So	if	I	take	4.4	plus	or	minus	2.24,	we	end	up	around	7	and	2,	and	1	and	8	both
fall	outside	of	that	range	of	a	standard	deviation.	So	we	can	say	mathematically,	that	1	and	8	are	outliers.
We	don't	have	to	guess	and	eyeball	it.	Now	there	is	still	a	judgment	call	as	to	what	you	consider	an	outlier
in	terms	of	how	many	standard	deviations	a	data	point	is	from	the	mean.

You	can	generally	talk	about	how	much	of	an	outlier	a	data	point	is	by	how	many
standard	deviations	(or	sometimes	how	many-sigmas)	from	the	mean	it	is.

So	that's	something	you'll	see	standard	deviation	used	for	in	the	real	world.





Population	variance	versus	sample	variance
There	is	a	little	nuance	to	standard	deviation	and	variance,	and	that's	when	you're	talking	about	population
versus	sample	variance.	If	you're	working	with	a	complete	set	of	data,	a	complete	set	of	observations,
then	you	do	exactly	what	I	told	you.	You	just	take	the	average	of	all	the	squared	variances	from	the	mean
and	that's	your	variance.

However,	if	you're	sampling	your	data,	that	is,	if	you're	taking	a	subset	of	the	data	just	to	make	computing
easier,	you	have	to	do	something	a	little	bit	different.	Instead	of	dividing	by	the	number	of	samples,	you
divide	by	the	number	of	samples	minus	1.	Let's	look	at	an	example.

We'll	use	the	sample	data	we	were	just	studying	for	people	standing	in	a	line.	We	took	the	sum	of	the
squared	variances	and	divided	by	5,	that	is	the	number	of	data	points	that	we	had,	to	get	5.04.

σ2	=	(11.56	+	0.16	+	0.36	+	0.16	+	12.96)	/	5	=	5.04

If	we	were	to	look	at	the	sample	variance,	which	is	designated	by	S2,	it	is	found	by	the	sum	of	the	squared
variances	divided	by	4,	that	is	(n	-	1).	This	gives	us	the	sample	variance,	which	comes	out	to	6.3.

S2	=	(11.56	+	0.16	+	0.36	+	0.16	+	12.96)	/	4	=	6.3

So	again,	if	this	was	some	sort	of	sample	that	we	took	from	a	larger	dataset,	that's	what	you	would	do.	If	it
was	a	complete	dataset,	you	divide	by	the	actual	number.	Okay,	that's	how	we	calculate	population	and
sample	variance,	but	what's	the	actual	logic	behind	it?





The	Mathematical	explanation
As	for	why	there	is	difference	between	population	and	sample	variance,	it	gets	into	really	weird	things
about	probability	that	you	probably	don't	want	to	think	about	too	much,	and	it	requires	some	fancy
mathematical	notation,	I	try	to	avoid	notation	in	this	book	as	much	as	possible	because	I	think	the	concepts
are	more	important,	but	this	is	basic	enough	stuff	and	that	you	will	see	it	over	and	over	again.

As	we've	seen,	population	variance	is	usually	designated	as	sigma	squared	(σ2),	with	sigma	(σ)	as
standard	deviation,	and	we	can	say	that	is	the	summation	of	each	data	point	X	minus	the	mean,	mu,
squared,	that's	the	variance	of	each	sample	squared	over	N,	the	number	of	data	points	,	and	we	can

express	it	with	the	following	equation:	

X	denotes	each	data	point
µ	denotes	the	mean
N	denotes	the	number	of	data	points

Sample	variance	similarly	is	designated	as	S2,	with	the	following	equation:	

X	denotes	each	data	point
M	denotes	the	mean
N-1	denotes	the	number	of	data	points	minus	1

That's	all	there	is	to	it.





Analyzing	standard	deviation	and	variance	on	a
histogram
Let's	write	some	code	here	and	play	with	some	standard	deviation	and	variances.	So	If	you	pull	up	the
StdDevVariance.ipynb	file	IPython	Notebook,	and	follow	along	with	me	here.	Please	do,	because	there's	an
activity	at	the	end	that	I	want	you	to	try.	What	we're	going	to	do	here	is	just	like	the	previous	example,	so
begin	with	the	following	code:	%matplotlib	inline	import	numpy	as	np	import	matplotlib.pyplot	as	plt
incomes	=	np.random.normal(100.0,	20.0,	10000)	plt.hist(incomes,	50)	plt.show()

We	use	matplotlib	to	plot	a	histogram	of	some	normally	distributed	random	data,	and	we	call	it	incomes.
We're	saying	it's	going	to	be	centered	around	100	(hopefully	that's	an	hourly	rate	or	something	and	not
annual,	or	some	weird	denomination),	with	a	standard	deviation	of	20	and	10,000	data	points.

Let's	go	ahead	and	generate	that	by	executing	that	above	code	block	and	plotting	it	as	shown	in	the

following	graph:	

We	have	10,000	data	points	centered	around	100.	With	a	normal	distribution	and	a	standard	deviation	of
20,	a	measure	of	the	spread	of	this	data,	you	can	see	that	the	most	common	occurrence	is	around	100,	and
as	we	get	further	and	further	from	that,	things	become	less	and	less	likely.	The	standard	deviation	point	of
20	that	we	specified	is	around	80	and	around	120.	You	can	see	in	the	histogram	that	this	is	the	point	where
things	start	to	fall	off	sharply,	so	we	can	say	that	things	beyond	that	standard	deviation	boundary	are
unusual.





Using	Python	to	compute	standard	deviation	and
variance
Now,	NumPy	also	makes	it	incredibly	easy	to	compute	the	standard	deviation	and	variance.	If	you	want	to
compute	the	actual	standard	deviation	of	this	dataset	that	we	generated,	you	just	call	the	std	function	right
on	the	dataset	itself.	So,	when	NumPy	creates	the	list,	it's	not	just	a	normal	Python	list,	it	actually	has
some	extra	stuff	tacked	onto	it	so	you	can	call	functions	on	it,	like	std	for	standard	deviation.	Let's	do	that
now:

incomes.std()	

This	gives	us	something	like	the	following	output	(remember	that	we	used	random	data,	so	your	figures
won't	be	exactly	the	same	as	mine):

20.024538249134373	

When	we	execute	that,	we	get	a	number	pretty	close	to	20,	because	that's	what	we	specified	when	we
created	our	random	data.	We	wanted	a	standard	deviation	of	20.	Sure	enough,	20.02,	pretty	close.

The	variance	is	just	a	matter	of	calling	var.

incomes.var()	

This	gives	me	the	following:

400.98213209104557	

It	comes	out	to	pretty	close	to	400,	which	is	202.	Right,	so	the	world	makes	sense!	Standard	deviation	is
just	the	square	root	of	the	variance,	or	you	could	say	that	the	variance	is	the	standard	deviation	squared.
Sure	enough,	that	works	out,	so	the	world	works	the	way	it	should.





Try	it	yourself
I	want	you	to	dive	in	here	and	actually	play	around	with	it,	make	it	real,	so	try	out	different	parameters	on
generating	that	normal	data.	Remember,	this	is	a	measure	of	the	shape	of	the	distribution	of	the	data,	so
what	happens	if	I	change	that	center	point?	Does	it	matter?	Does	it	actually	affect	the	shape?	Why	don't
you	try	it	out	and	find	out?

Try	messing	with	the	actual	standard	deviation,	that	we've	specified,	to	see	what	impact	that	has	on	the
shape	of	the	graph.	Maybe	try	a	standard	deviation	of	30,	and	you	know,	you	can	see	how	that	actually
affects	things.	Let's	make	it	even	more	dramatic,	like	50.	Just	play	around	with	50.	You'll	see	the	graph
starting	to	get	a	little	bit	fatter.	Play	around	with	different	values,	just	get	a	feel	of	how	these	values	work.
This	is	the	only	way	to	really	get	an	intuitive	sense	of	standard	deviation	and	variance.	Mess	around	with
some	different	examples	and	see	the	effect	that	it	has.

So	that's	standard	deviation	and	variance	in	practice.	You	got	hands	on	with	some	of	it	there,	and	I	hope
you	played	around	a	little	bit	to	get	some	familiarity	with	it.	These	are	very	important	concepts	and	we'll
talk	about	standard	deviations	a	lot	throughout	the	book	and	no	doubt	throughout	your	career	in	data
science,	so	make	sure	you've	got	that	under	your	belt.	Let's	move	on.





Probability	density	function	and	probability	mass
function
So	we've	already	seen	some	examples	of	a	normal	distribution	function	for	some	of	the	examples	in	this
book.	That's	an	example	of	a	probability	density	function,	and	there	are	other	types	of	probability	density
functions	out	there.	So	let's	dive	in	and	see	what	it	really	means	and	what	some	other	examples	of	them
are.

	





The	probability	density	function	and	probability
mass	functions
We've	already	seen	some	examples	of	a	normal	distribution	function	for	some	of	the	code	we've	looked	at
in	this	book.	That's	an	example	of	a	probability	density	function,	and	there	are	other	types	of	probability
density	functions	out	there.	Let's	dive	in	and	see	what	that	really	means	and	what	some	other	examples	of
them	there	are.

	





Probability	density	functions
Let's	talk	about	probability	density	functions,	and	we've	used	one	of	these	already	in	the	book.	We	just
didn't	call	it	that.	Let's	formalize	some	of	the	stuff	that	we've	talked	about.	For	example,	we've	seen	the
normal	distribution	a	few	times,	and	that	is	an	example	of	a	probability	density	function.	The	following

figure	is	an	example	of	a	normal	distribution	curve	

It's	conceptually	easy	to	try	to	think	of	this	graph	as	the	probability	of	a	given	value	occurring,	but	that's	a
little	bit	misleading	when	you're	talking	about	continuous	data.	Because	there's	an	infinite	number	of
actual	possible	data	points	in	a	continuous	data	distribution.	There	could	be	0	or	0.001	or	0.00001	so	the
actual	probability	of	a	very	specific	value	happening	is	very,	very	small,	infinitely	small.	The	probability
density	function	really	tells	the	probability	of	a	given	range	of	values	occurring.	So	that's	the	way	you've
got	to	think	about	it.

So,	for	example,	in	the	normal	distribution	shown	in	the	above	graph,	between	the	mean	(0)	and	one
standard	deviation	from	the	mean	(1σ)	there's	a	34.1%	chance	of	a	value	falling	in	that	range.	You	can
tighten	this	up	or	spread	it	out	as	much	as	you	want,	figure	out	the	actual	values,	but	that's	the	way	to	think
about	a	probability	density	function.	For	a	given	range	of	values	it	gives	you	a	way	of	finding	out	the
probability	of	that	range	occurring.

You	can	see	in	the	graph,	as	you	get	close	to	the	mean	(0),	within	one	standard	deviation	(-1σ	and
1σ),	you're	pretty	likely	to	land	there.	I	mean,	if	you	add	up	34.1	and	34.1,	which	equals	to	68.2%,
you	get	the	probability	of	landing	within	one	standard	deviation	of	the	mean.
However,	as	you	get	between	two	and	three	standard	deviations	(-3σ	to	-2σ	and	2σ	to	3σ),	we're
down	to	just	a	little	bit	over	4%	(4.2%,	to	be	precise).
As	you	get	out	beyond	three	standard	deviations	(-3σ	and	3σ)	then	we're	much	less	than	1%.

So,	the	graph	is	just	a	way	to	visualize	and	talk	about	the	probabilities	of	the	given	data	point	happening.
Again,	a	probability	distribution	function	gives	you	the	probability	of	a	data	point	falling	within	some
given	range	of	a	given	value,	and	a	normal	function	is	just	one	example	of	a	probability	density	function.
We'll	look	at	some	more	in	a	moment.





Probability	mass	functions
Now	when	you're	dealing	with	discrete	data,	that	little	nuance	about	having	infinite	numbers	of	possible
values	goes	away,	and	we	call	that	something	different.	So	that	is	a	probability	mass	function.	If	you're
dealing	with	discrete	data,	you	can	talk	about	probability	mass	functions.	Here's	a	graph	to	help	visualize
this:

For	example,	you	can	plot	a	normal	probability	density	function	of	continuous	data	on	the	black	curve
shown	in	the	graph,	but	if	we	were	to	quantize	that	into	a	discrete	dataset	like	we	would	do	with	a
histogram,	we	can	say	the	number	3	occurs	some	set	number	of	times,	and	you	can	actually	say	the	number
3	has	a	little	over	30%	chance	of	occurring.	So	a	probability	mass	function	is	the	way	that	we	visualize
the	probability	of	discrete	data	occurring,	and	it	looks	a	lot	like	a	histogram	because	it	basically	is	a
histogram.

Terminology	difference:	A	probability	density	function	is	a	solid	curve	that	describes	the
probability	of	a	range	of	values	happening	with	continuous	data.	A	probability	mass
function	is	the	probabilities	of	given	discrete	values	occurring	in	a	dataset.





Types	of	data	distributions
Let's	look	at	some	real	examples	of	probability	distribution	functions	and	data	distributions	in	general	and
wrap	your	head	a	little	bit	more	around	data	distributions	and	how	to	visualize	them	and	use	them	in
Python.

Go	ahead	and	open	up	the	Distributions.ipynb	from	the	book	materials,	and	you	can	follow	along	with	me
here	if	you'd	like.

	





Uniform	distribution
Let's	start	off	with	a	really	simple	example:	uniform	distribution.	A	uniform	distribution	just	means	there's
a	flat	constant	probability	of	a	value	occurring	within	a	given	range.

import	numpy	as	np	

Import	matplotlib.pyplot	as	plt	

	

values	=	np.random.uniform(-10.0,	10.0,	100000)	

plt.hist(values,	50)	

plt.show()	

So	we	can	create	a	uniform	distribution	by	using	the	NumPy	random.uniform	function.	The	preceding	code
says,	I	want	a	uniformly	distributed	random	set	of	values	that	ranges	between	-10	and	10,	and	I	want	100000
of	them.	If	I	then	create	a	histogram	of	those	values,	you	can	see	it	looks	like	the	following.

There's	pretty	much	an	equal	chance	of	any	given	value	or	range	of	values	occurring	within	that	data.	So,
unlike	the	normal	distribution,	where	we	saw	a	concentration	of	values	near	the	mean,	a	uniform
distribution	has	equal	probability	across	any	given	value	within	the	range	that	you	define.

So	what	would	the	probability	distribution	function	of	this	look	like?	Well,	I'd	expect	to	see	basically
nothing	outside	of	the	range	of	-10	or	beyond	10.	But	when	I'm	between	-10	and	10,	I	would	see	a	flat	line
because	there's	a	constant	probability	of	any	one	of	those	ranges	of	values	occurring.	So	in	a	uniform
distribution	you	would	see	a	flat	line	on	the	probability	distribution	function	because	there	is	basically	a
constant	probability.	Every	value,	every	range	of	values	has	an	equal	chance	of	appearing	as	any	other
value.





Normal	or	Gaussian	distribution
Now	we've	seen	normal,	also	known	as	Gaussian,	distribution	functions	already	in	this	book.	You	can
actually	visualize	those	in	Python.	There	is	a	function	called	pdf	(probability	density	function)	in	the
scipy.stats.norm	package	function.

So,	let's	look	at	the	following	example:

from	scipy.stats	import	norm	

import	matplotlib.pyplot	as	plt	

	

x	=	np.arange(-3,	3,	0.001)	

plt.plot(x,	norm.pdf(x))	

In	the	preceding	example,	we're	creating	a	list	of	x	values	for	plotting	that	range	between	-3	and	3	with	an
increment	of	0.001	in	between	them	by	using	the	arange	function.	So	those	are	the	x	values	on	the	graph	and
we're	going	to	plot	the	x-axis	with	using	those	values.	The	y-axis	is	going	to	be	the	normal	function,
norm.pdf,	that	the	probability	density	function	for	a	normal	distribution,	on	those	x	values.	We	end	up	with
the	following	output:

The	pdf	function	with	a	normal	distribution	looks	just	like	it	did	in	our	previous	section,	that	is,	a	normal
distribution	for	the	given	numbers	that	we	provided,	where	0	represents	the	mean,	and	the	numbers	-3,	-2,
-1,	1,	2,	and	3	are	standard	deviations.

Now,	we	will	generate	random	numbers	with	a	normal	distribution.	We've	done	this	a	few	times	already;
consider	this	a	refresher.	Refer	to	the	following	block	of	code:

import	numpy	as	np	

import	matplotlib.pyplot	as	plt	

	

mu	=	5.0	

sigma	=	2.0	

values	=	np.random.normal(mu,	sigma,	10000)	

plt.hist(values,	50)	

plt.show()	

In	the	above	code,	we	use	the	random.normal	function	of	the	NumPy	package,	and	the	first	parameter	mu,
represents	the	mean	that	you	want	to	center	the	data	around.	sigma	is	the	standard	deviation	of	that	data,
which	is	basically	the	spread	of	it.	Then,	we	specify	the	number	of	data	points	that	we	want	using	a
normal	probability	distribution	function,	which	is	10000	here.	So	that's	a	way	to	use	a	probability



distribution	function,	in	this	case	the	normal	distribution	function,	to	generate	a	set	of	random	data.	We	can
then	plot	that,	using	a	histogram	broken	into	50	buckets	and	show	it.	The	following	output	is	what	we	end
up	with:

It	does	look	more	or	less	like	a	normal	distribution,	but	since	there	is	a	random	element,	it's	not	going	to
be	a	perfect	curve.	We're	talking	about	probabilities;	there	are	some	odds	of	things	not	quite	being	what
they	should	be.





The	exponential	probability	distribution	or
Power	law
Another	distribution	function	you	see	pretty	often	is	the	exponential	probability	distribution	function,
where	things	fall	off	in	an	exponential	manner.

When	you	talk	about	an	exponential	fall	off,	you	expect	to	see	a	curve,	where	it's	very	likely	for	something
to	happen,	near	zero,	but	then,	as	you	get	farther	away	from	it,	it	drops	off	very	quickly.	There's	a	lot	of
things	in	nature	that	behave	in	this	manner.

To	do	that	in	Python,	just	like	we	had	a	function	in	scipy.stats	for	norm.pdf,	we	also	have	an	expon.pdf,	or	an
exponential	probability	distribution	function	to	do	that	in	Python,	we	can	do	the	same	syntax	that	we	did
for	the	normal	distribution	with	an	exponential	distribution	here	as	shown	in	the	following	code	block:

from	scipy.stats	import	expon	

import	matplotlib.pyplot	as	plt	

	

x	=	np.arange(0,	10,	0.001)	

plt.plot(x,	expon.pdf(x))	

So	again,	in	the	above	code,	we	just	create	our	x	values	using	the	NumPy	arange	function	to	create	a	bunch
of	values	between	0	and	10	with	a	step	size	of	0.001.	Then,	we	plot	those	x	values	against	the	y-axis,	which
is	defined	as	the	function	expon.pdf(x).	The	output	looks	like	an	exponential	fall	off.	As	shown	in	the
following	screenshot:





Binomial	probability	mass	function
We	can	also	visualize	probability	mass	functions.	This	is	called	the	binomial	probability	mass	function.
Again,	we	are	going	to	use	the	same	syntax	as	before,	as	shown	in	the	following	code:

from	scipy.stats	import	expon	

import	matplotlib.pyplot	as	plt	

	

x	=	np.arange(0,	10,	0.001)	

plt.plot(x,	expon.pdf(x))	

So	instead	of	expon	or	norm,	we	just	use	binom.	A	reminder:	The	probability	mass	function	deals	with	discrete
data.	We	have	been	all	along,	really,	it's	just	how	you	think	about	it.

Coming	back	to	our	code,	we're	creating	some	discrete	x	values	between	0	and	10	at	a	spacing	of	0.01,	and
we're	saying	I	want	to	plot	a	binomial	probability	mass	function	using	that	data.	With	the	binom.pmf	function,
I	can	actually	specify	the	shape	of	that	data	using	two	shape	parameters,	n	and	p.	In	this	case,	they're	10	and
0.5	respectively.	output	is	shown	on	the	following	graph:

If	you	want	to	go	and	play	around	with	different	values	to	see	what	effects	it	has,	that's	a	good	way	to	get
an	intuitive	sense	of	how	those	shape	parameters	work	on	the	probability	mass	function.





Poisson	probability	mass	function
Lastly,	the	other	distribution	function	you	might	hear	about	is	a	Poisson	probability	mass	function,	and	this
has	a	very	specific	application.	It	looks	a	lot	like	a	normal	distribution,	but	it's	a	little	bit	different.

The	idea	here	is,	if	you	have	some	information	about	the	average	number	of	things	that	happen	in	a	given
time	period,	this	probability	mass	function	can	give	you	a	way	to	predict	the	odds	of	getting	another	value
instead,	on	a	given	future	day.

As	an	example,	let's	say	I	have	a	website,	and	on	average	I	get	500	visitors	per	day.	I	can	use	the	Poisson
probability	mass	function	to	estimate	the	probability	of	seeing	some	other	value	on	a	specific	day.	For
example,	with	my	average	of	500	visitors	per	day,	what's	the	odds	of	seeing	550	visitors	on	a	given	day?
That's	what	a	Poisson	probability	mass	function	can	give	you	take	a	look	at	the	following	code:

from	scipy.stats	import	poisson	

import	matplotlib.pyplot	as	plt	

	

mu	=	500	

x	=	np.arange(400,	600,	0.5)	

plt.plot(x,	poisson.pmf(x,	mu))	

In	this	code	example,	I'm	saying	my	average	is	500	mu.	I'm	going	to	set	up	some	x	values	to	look	at
between	400	and	600	with	a	spacing	of	0.5.	I'm	going	to	plot	that	using	the	poisson.pmf	function.	I	can	use	that
graph	to	look	up	the	odds	of	getting	any	specific	value	that's	not	500,	assuming	a	normal	distribution:

The	odds	of	seeing	550	visitors	on	a	given	day,	it	turns	out,	comes	out	to	about	0.002	or	0.2%	probability.
Very	interesting.

Alright,	so	those	are	some	common	data	distributions	you	might	run	into	in	the	real	world.

Remember	we	used	a	probability	distribution	function	with	continuous	data,	but	when
we're	dealing	with	discrete	data,	we	use	a	probability	mass	function.

So	that's	probability	density	functions,	and	probability	mass	functions.	Basically,	a	way	to	visualize	and
measure	the	actual	chance	of	a	given	range	of	values	occurring	in	a	dataset.	Very	important	information



and	a	very	important	thing	to	understand.	We're	going	to	keep	using	that	concept	over	and	over	again.
Alright,	let's	move	on.





Percentiles	and	moments
Next,	we'll	talk	about	percentiles	and	moments.	You	hear	about	percentiles	in	the	news	all	the	time.
People	that	are	in	the	top	1%	of	income:	that's	an	example	of	percentile.	We'll	explain	that	and	have	some
examples.	Then,	we'll	talk	about	moments,	a	very	fancy	mathematical	concept,	but	it	turns	out	it's	very
simple	to	understand	conceptually.	Let's	dive	in	and	talk	about	percentiles	and	moments,	a	couple	of	a
pretty	basic	concepts	in	statistics,	but	again,	we're	working	our	way	up	to	the	hard	stuff,	so	bear	with	me
as	we	go	through	some	of	this	review.

	





Percentiles
Let's	see	what	percentiles	mean.	Basically,	if	you	were	to	sort	all	of	the	data	in	a	dataset,	a	given
percentile	is	the	point	at	which	that	percent	of	the	data	is	less	than	the	point	you're	at.

A	common	example	you	see	talked	about	a	lot,	is	income	distribution.	When	we	talk	about	the	99th
percentile,	or	the	one-percenters,	imagine	that	you	were	to	take	all	the	incomes	of	everybody	in	the
country,	in	this	case	the	United	States,	and	sort	them	by	income.	The	99th	percentile	will	be	the	income
amount	at	which	99%	of	the	rest	of	the	country	was	making	less	than	that	amount.	It's	a	very	easy	way	to
comprehend	it.

In	a	dataset,	a	percentile	is	the	point	at	which	x%	of	the	values	are	less	than	the	value	at
that	point.

The	following	graph	is	an	example	for	income	distribution:

The	preceding	image	shows	an	example	of	income	distribution	data.	For	example,	at	the	99th	percentile
we	can	say	that	99%	of	the	data	points,	which	represent	people	in	America,	make	less	than	$506,553	a
year,	and	one	percent	make	more	than	that.	Conversely,	if	you're	a	one-percenter,	you're	making	more	than
$506,553	a	year.	Congratulations!	But	if	you're	a	more	typical	median	person,	the	50th	percentile	defines
the	point	at	which	half	of	the	people	are	making	less	and	half	are	making	more	than	you	are,	which	is	the
definition	of	median.	The	50th	percentile	is	the	same	thing	as	median,	and	that	would	be	at	$42,327	given
this	dataset.	So,	if	you're	making	$42,327	a	year	in	the	US,	you	are	making	exactly	the	median	amount	of
income	for	the	country.

You	can	see	the	problem	of	income	distribution	in	the	graph	above.	Things	tend	to	be	very	concentrated
toward	the	high	end	of	the	graph,	which	is	a	very	big	political	problem	right	now	in	the	country.	We'll	see
what	happens	with	that,	but	that's	beyond	the	scope	of	this	book.	That's	percentiles	in	a	nutshell.





Quartiles
Percentiles	are	also	used	in	the	context	of	talking	about	the	quartiles	in	a	distribution.	Let's	look	at	a
normal	distribution	to	understand	this	better.

Here's	an	example	illustrating	Percentile	in	normal	distribution:

Looking	at	the	normal	distribution	in	the	preceding	image,	we	can	talk	about	quartiles.	Quartile	1	(Q1)
and	quartile	3	(Q3)	in	the	middle	are	just	the	points	that	contain	together	50%	of	the	data,	so	25%	are	on
left	side	of	the	median	and	25%	are	on	the	right	side	of	the	median.

The	median	in	this	example	happens	to	be	near	the	mean.	For	example,	the	interquartile	range	(IQR),
when	we	talk	about	a	distribution,	is	the	area	in	the	middle	of	the	distribution	that	contains	50%	of	the
values.

The	topmost	part	of	the	image	is	an	example	of	what	we	call	a	box-and-whisker	diagram.	Don't	concern
yourself	yet	about	the	stuff	out	on	the	edges	of	the	box.	That	gets	a	little	bit	confusing,	and	we'll	cover	that
later.	Even	though	they	are	called	quartile	1	(Q1)	and	quartile	3	(Q1),	they	don't	really	represent	25%	of
the	data,	but	don't	get	hung	up	on	that	yet.	Focus	on	the	point	that	the	quartiles	in	the	middle	represent	25%
of	the	data	distribution.





Computing	percentiles	in	Python
Let's	look	at	some	more	examples	of	percentiles	using	Python	and	kind	of	get	our	hands	on	it	and
conceptualize	this	a	little	bit	more.	Go	ahead	and	open	the	Percentiles.ipynb	file	if	you'd	like	to	follow
along,	and	again	I	encourage	you	to	do	so	because	I	want	you	to	play	around	with	this	a	little	bit	later.

Let's	start	off	by	generating	some	randomly	distributed	normal	data,	or	normally	distributed	random	data,
rather,	refer	to	the	following	code	block:

%matplotlib	inline	

import	numpy	as	np	

import	matplotlib.pyplot	as	plt	

	

vals	=	np.random.normal(0,	0.5,	10000)	

	

plt.hist(vals,	50)	

plt.show()	

In	this	example,	what	we're	going	to	do	is	generate	some	data	centered	around	zero,	that	is	with	a	mean	of
zero,	with	a	standard	deviation	of	0.5,	and	I'm	going	to	make	10000	data	points	with	that	distribution.	Then,
we're	going	to	plot	a	histogram	and	see	what	we	come	up	with.

The	generated	histogram	looks	very	much	like	a	normal	distribution,	but	because	there	is	a	random
component	we	have	a	little	outlier	near	the	deviation	of	-2	in	this	example	here.	Things	are	tipped	a	little
bit	at	the	mean,	a	little	bit	of	random	variation	there	to	make	things	interesting.

NumPy	provides	a	very	handy	percentile	function	that	will	compute	the	percentile	values	of	this
distribution	for	you.	So,	we	created	our	vals	list	of	data	using	np.random.normal,	and	I	can	just	call	the
np.percentile	function	to	figure	out	the	50th	percentile	value	in	using	the	following	code:

np.percentile(vals,	50)	

The	following	is	the	output	of	the	preceding	code:

0.0053397035195310248

The	output	turns	out	to	be	0.005.	So	remember,	the	50th	percentile	is	just	another	name	for	the	median,	and
it	turns	out	the	median	is	very	close	to	zero	in	this	data.	You	can	see	in	the	graph	that	we're	tipped	a	little



bit	to	the	right,	so	that's	not	too	surprising.

I	want	to	compute	the	90th	percentile,	which	gives	me	the	point	at	which	90%	of	the	data	is	less	than	that
value.	We	can	easily	do	that	with	the	following	code:

np.percentile(vals,	90)	

Here	is	the	output	of	that	code:

Out[4]:	0.64099069837340827	

The	90th	percentile	of	this	data	turns	out	to	be	0.64,	so	it's	around	here,	and	basically,	at	that	point	less
than	90%	of	the	data	is	less	than	that	value.	I	can	believe	that.	10%	of	the	data	is	greater	than	0.64,	90%
of	it,	less	than	0.65.

Let's	compute	the	20th	percentile	value,	that	would	give	me	the	point	at	which	20%	of	the	values	are	less
than	that	number	that	I	come	up	with.	Again,	we	just	need	a	very	simple	alteration	to	the	code:

np.percentile(vals,	20)	

This	gives	the	following	output:

Out[5]:-0.41810340026619164	

The	20th	percentile	point	works	out	to	be	-0.4,	roughly,	and	again	I	believe	that.	It's	saying	that	20%	of	the
data	lies	to	the	left	of	-0.4,	and	conversely,	80%	is	greater.

If	you	want	to	get	a	feel	as	to	where	those	breaking	points	are	in	a	dataset,	the	percentile	function	is	an
easy	way	to	compute	them.	If	this	were	a	dataset	representing	income	distribution,	we	could	just	call
np.percentile(vals,	99)	and	figure	out	what	the	99th	percentile	is.	You	could	figure	out	who	those	one-
percenters	people	keep	talking	about	really	are,	and	if	you're	one	of	them.

Alright,	now	to	get	your	hands	dirty.	I	want	you	to	play	around	with	this	data.	This	is	an	IPython	Notebook
for	a	reason,	so	you	can	mess	with	it	and	mess	with	the	code,	try	different	standard	deviation	values,	see
what	effect	it	has	on	the	shape	of	the	data	and	where	those	percentiles	end	up	lying,	for	example.	Try	using
smaller	dataset	sizes	and	add	a	little	bit	more	random	variation	in	the	thing.	Just	get	comfortable	with	it,
play	around	with	it,	and	find	you	can	actually	do	this	stuff	and	write	some	real	code	that	works.





Moments
Next,	let's	talk	about	moments.	Moments	are	a	fancy	mathematical	phrase,	but	you	don't	actually	need	a
math	degree	to	understand	it,	though.	Intuitively,	it's	a	lot	simpler	than	it	sounds.

It's	one	of	those	examples	where	people	in	statistics	and	data	science	like	to	use	big	fancy	terms	to	make
themselves	sound	really	smart,	but	the	concepts	are	actually	very	easy	to	grasp,	and	that's	the	theme	you're
going	to	hear	again	and	again	in	this	book.

Basically,	moments	are	ways	to	measure	the	shape	of	a	data	distribution,	of	a	probability	density	function,
or	of	anything,	really.	Mathematically,	we've	got	some	really	fancy	notation	to	define	them:

If	you	do	know	calculus,	it's	actually	not	that	complicated	of	a	concept.	We're	taking	the	difference
between	each	value	from	some	value	raised	to	the	nth	power,	where	n	is	the	moment	number	and
integrating	across	the	entire	function	from	negative	infinity	to	infinity.	But	intuitively,	it's	a	lot	easier	than
calculus.

Moments	can	be	defined	as	quantitative	measures	of	the	shape	of	a	probability	density
function.

Ready?	Here	we	go!

1.	 The	first	moment	works	out	to	just	be	the	mean	of	the	data	that	you're	looking	at.	That's	it.	The	first
moment	is	the	mean,	the	average.	It's	that	simple.

2.	 The	second	moment	is	the	variance.	That's	it.	The	second	moment	of	the	dataset	is	the	same	thing	as
the	variance	value.	It	might	seem	a	little	bit	creepy	that	these	things	kind	of	fall	out	of	the	math
naturally,	but	think	about	it.	The	variance	is	really	based	on	the	square	of	the	differences	from	the
mean,	so	coming	up	with	a	mathematical	way	of	saying	that	variance	is	related	to	mean	isn't	really
that	much	of	a	stretch,	right.	It's	just	that	simple.

	

3.	 Now	when	we	get	to	the	third	and	fourth	moments,	things	get	a	little	bit	trickier,	but	they're	still
concepts	that	are	easy	to	grasp.	The	third	moment	is	called	skew,	and	it	is	basically	a	measure	of
how	lopsided	a	distribution	is.



You	can	see	in	these	two	examples	above	that,	if	I	have	a	longer	tail	on	the	left,	now	then	that	is	a
negative	skew,	and	if	I	have	a	longer	tail	on	the	right	then,	that's	a	positive	skew.	The	dotted	lines
show	what	the	shape	of	a	normal	distribution	would	look	like	without	skew.	The	dotted	line	out	on
the	left	side	then	I	end	up	with	a	negative	skew,	or	on	the	other	side,	a	positive	skew	in	that	example.
OK,	so	that's	all	skew	is.	It's	basically	stretching	out	the	tail	on	one	side	or	the	other,	and	it	is	a
measure	of	how	lopsided,	or	how	skewed	a	distribution	is.

4.	 The	fourth	moment	is	called	kurtosis.	Wow,	that's	a	fancy	word!	All	that	really	is,	is	how	thick	is	the
tail	and	how	sharp	is	the	peak.	So	again,	it's	a	measure	of	the	shape	of	the	data	distribution.	Here's	an
example:

You	can	see	that	the	higher	peak	values	have	a	higher	kurtosis	value.	The	topmost	curve	has	a	higher
kurtosis	than	the	bottommost	curve.	It's	a	very	subtle	difference,	but	a	difference	nonetheless.	It
basically	measures	how	peaked	your	data	is.

Let's	review	all	that:	the	first	moment	is	mean,	the	second	moment	is	variance,	the	third	moment	is	skew,



and	the	fourth	moment	is	kurtosis.	We	already	know	what	mean	and	variance	are.	Skew	is	how	lopsided
the	data	is,	how	stretched	out	one	of	the	tails	might	be.	Kurtosis	is	how	peaked,	how	squished	together	the
data	distribution	is.





Computing	moments	in	Python
Let's	play	around	in	Python	and	actually	compute	these	moments	and	see	how	you	do	that.	To	play	around
with	this,	go	ahead	and	open	up	the	Moments.ipynb,	and	you	can	follow	along	with	me	here.

Let's	again	create	that	same	normal	distribution	of	random	data.	Again,	we're	going	to	make	it	centered
around	zero,	with	a	0.5	standard	deviation	and	10,000	data	points,	and	plot	that	out:

import	numpy	as	np	

import	matplotlib.pyplot	as	plt	

	

vals	=	np.random.normal(0,	0.5,	10000)	

	

plt.hist(vals,	50)	

plt.show()	

So	again,	we	get	a	randomly	generated	set	of	data	with	a	normal	distribution	around	zero.

Now,	we	find	the	mean	and	variance.	We've	done	this	before;	NumPy	just	gives	you	a	mean	and	var	function
to	compute	that.	So,	we	just	call	np.mean	to	find	the	first	moment,	which	is	just	a	fancy	word	for	the	mean,
as	shown	in	the	following	code:

np.mean(vals)

This	gives	the	following	output	in	our	example:

Out	[2]:-0.0012769999428169742

The	output	turns	out	to	be	very	close	to	zero,	just	like	we	would	expect	for	normally	distributed	data
centered	around	zero.	So,	the	world	makes	sense	so	far.

Now	we	find	the	second	moment,	which	is	just	another	name	for	variance.	We	can	do	that	with	the
following	code,	as	we've	seen	before:

np.var(vals)

Providing	the	following	output:

Out[3]:0.25221246428323563



That	output	turns	out	to	be	about	0.25,	and	again,	that	works	out	with	a	nice	sanity	check.	Remember	that
standard	deviation	is	the	square	root	of	variance.	If	you	take	the	square	root	of	0.25,	it	comes	out	to	0.5,
which	is	the	standard	deviation	we	specified	while	creating	this	data,	so	again,	that	checks	out	too.

The	third	moment	is	skew,	and	to	do	that	we're	going	to	need	to	use	the	SciPy	package	instead	of	NumPy.
But	that	again	is	built	into	any	scientific	computing	package	like	Enthought	Canopy	or	Anaconda.	Once	we
have	SciPy,	the	function	call	is	as	simple	as	our	earlier	two:

import	scipy.stats	as	sp

sp.skew(vals)

This	displays	the	following	output:

Out[4]:	0.020055795996111746

We	can	just	call	sp.skew	on	the	vals	list,	and	that	will	give	us	the	skew	value.	Since	this	is	centered	around
zero,	it	should	be	almost	a	zero	skew.	It	turns	out	that	with	random	variation	it	does	skew	a	little	bit	left,
and	actually	that	does	jive	with	the	shape	that	we're	seeing	in	the	graph.	It	looks	like	we	did	kind	of	pull	it
a	little	bit	negative.

The	fourth	moment	is	kurtosis,	which	describes	the	shape	of	the	tail.	Again,	for	a	normal	distribution	that
should	be	about	zero.SciPy	provides	us	with	another	simple	function	call

sp.kurtosis(vals)

And	here's	the	output:

Out	[5]:0.059954502386585506

Indeed,	it	does	turn	out	to	be	zero.	Kurtosis	reveals	our	data	distribution	in	two	linked	ways:	the	shape	of
the	tail,	or	the	how	sharp	the	peak	If	I	just	squish	the	tail	down	it	kind	of	pushes	up	that	peak	to	be
pointier,	and	likewise,	if	I	were	to	push	down	that	distribution,	you	can	imagine	that's	kind	of	spreading
things	out	a	little	bit,	making	the	tails	a	little	bit	fatter,	and	the	peak	of	it	a	little	bit	lower.	So	that's	what
kurtosis	means,	and	in	this	example,	kurtosis	is	near	zero	because	it	is	just	a	plain	old	normal	distribution.

If	you	want	to	play	around	with	it,	go	ahead	and,	again,	try	to	modify	the	distribution.	Make	it	centered
around	something	besides	0,	and	see	if	that	actually	changes	anything.	Should	it?	Well,	it	really	shouldn't
because	these	are	all	measures	of	the	shape	of	the	distribution,	and	it	doesn't	really	say	a	whole	lot	about
where	that	distribution	is	exactly.	It's	a	measure	of	the	shape.	That's	what	the	moments	are	all	about.	Go
ahead	and	play	around	with	that,	try	different	center	values,	try	different	standard	deviation	values,	and
see	what	effect	it	has	on	these	values,	and	it	doesn't	change	at	all.	Of	course,	you'd	expect	things	like	the
mean	to	change	because	you're	changing	the	mean	value,	but	variance,	skew,	maybe	not.	Play	around,	find
out.

There	you	have	percentiles	and	moments.	Percentiles	are	a	pretty	simple	concept.	Moments	sound	hard,
but	it's	actually	pretty	easy	to	understand	how	to	do	it,	and	it's	easy	in	Python	too.	Now	you	have	that
under	your	belt.	It's	time	to	move	on.





Summary
In	this	chapter,	we	saw	the	types	of	data	(numeric,	categorical,	and	ordinal	data)	that	you	might	encounter
and	how	to	categorize	them	and	how	you	treat	them	differently	depending	on	what	kind	of	data	you're
dealing	with.	We	also	walked	through	the	statistical	concepts	of	mean,	median	and	mode,	and	we	also
saw	the	importance	of	choosing	between	median	and	mean,	and	that	often	the	median	is	a	better	choice
than	the	mean	because	of	outliers.

Next,	we	analyzed	how	to	compute	mean,	median,	and	mode	using	Python	in	an	IPython	Notebook	file.	We
learned	the	concepts	of	standard	deviation	and	variance	in	depth	and	how	to	compute	them	in	Python.	We
saw	that	they’re	a	measure	of	the	spread	of	a	data	distribution.	We	also	saw	a	way	to	visualize	and
measure	the	actual	chance	of	a	given	range	of	values	occurring	in	a	dataset	using	probability	density
functions	and	probability	mass	functions.

We	looked	at	the	types	of	data	distributions	(Uniform	distribution,	Normal	or	Gaussian	distribution,
Exponential	probability	distribution,	Binomial	probability	mass	function,	Poisson	probability	mass
function)	in	general	and	how	to	visualize	them	using	Python.	We	analyzed	the	concepts	of	percentiles	and
moments	and	saw	how	to	compute	them	using	Python.

In	the	next	chapter,	we'll	look	at	using	the	matplotlib	library	more	extensively,	and	also	dive	into	the	more
advanced	topics	of	covariance	and	correlation.

	



	



Matplotlib	and	Advanced	Probability	Concepts
	

After	going	through	some	of	the	simpler	concepts	of	statistics	and	probability	in	the	previous	chapter,
we're	now	going	to	turn	our	attention	to	some	more	advanced	topics	that	you'll	need	to	be	familiar	with	to
get	the	most	out	of	the	remainder	of	this	book.	Don't	worry,	they're	not	too	complicated.	First	of	all,	let's
have	some	fun	and	look	at	some	of	the	amazing	graphing	capabilities	of	the	matplotlib	library.

We'll	be	covering	the	following	topics	in	this	chapter:

Using	the	matplotlib	package	to	plot	graphs
Understanding	covariance	and	correlation	to	determine	the	relationship	between	data
Understanding	conditional	probability	with	examples
Understanding	Bayes'	theorem	and	its	importance

	

	





A	crash	course	in	Matplotlib
Your	data	is	only	as	good	as	you	can	present	it	to	other	people,	really,	so	let's	talk	about	plotting	and
graphing	your	data	and	how	to	present	it	to	others	and	make	your	graphs	look	pretty.	We're	going	to
introduce	Matplotlib	more	thoroughly	and	put	it	through	its	paces.

I'll	show	you	a	few	tricks	on	how	to	make	your	graphs	as	pretty	as	you	can.	Let's	have	some	fun	with
graphs.	It's	always	good	to	make	pretty	pictures	out	of	your	work.	This	will	give	you	some	more	tools	in
your	tool	chest	for	visualizing	different	types	of	data	using	different	types	of	graphs	and	making	it	look
pretty.	We'll	use	different	colors,	different	line	styles,	different	axes,	things	like	that.	It's	not	only
important	to	use	graphs	and	data	visualization	to	try	to	find	interesting	patterns	in	your	data,	but	it's	also
interesting	to	present	your	findings	well	to	a	non-technical	audience.	Without	further	ado,	let's	dive	in	to
Matplotlib.

Go	ahead	and	open	up	the	MatPlotLib.ipynb	file	and	you	can	play	around	with	this	stuff	along	with	me.	We'll
start	by	just	drawing	a	simple	line	graph.

%matplotlib	inline	

	

from	scipy.stats	import	norm	

import	matplotlib.pyplot	as	plt	

import	numpy	as	np	

x	=	np.arange(-3,	3,	0.001)	

	

plt.plot(x,	norm.pdf(x))	

plt.show()	

So	in	this	example,	I	import	matplotlib.pyplot	as	plt,	and	with	this,	we	can	refer	to	it	as	plt	from	now	on	in
this	notebook.	Then,	I	use	np.arange(-3,	3,	0.001)	to	create	an	x-axis	filled	with	values	between	-3	and	3	at
increments	of	0.001,	and	use	pyplot's	plot()	function	to	plot	x.	The	y	function	will	be	norm.pdf(x).	So	I'm
going	to	create	a	probability	density	function	with	a	normal	distribution	based	on	the	x	values,	and	I'm
using	the	scipy.stats	norm	package	to	do	that.

So	tying	it	back	into	last	chapter's	look	at	probability	density	functions,	here	we	are	plotting	a	normal
probability	density	function	using	matplotlib.	So	we	just	call	pyplot's	plot()	method	to	set	up	our	plot,	and
then	we	display	it	using	plt.show().	When	we	run	the	previous	code,	we	get	the	following	output:



That's	what	we	get:	a	pretty	little	graph	with	all	the	default	formatting.





Generating	multiple	plots	on	one	graph
Let's	say	I	want	to	plot	more	than	one	thing	at	a	time.	You	can	actually	call	plot	multiple	times	before
calling	show	to	actually	add	more	than	one	function	to	your	graph.	Let's	look	at	the	following	code:

plt.plot(x,	norm.pdf(x))	

plt.plot(x,	norm.pdf(x,	1.0,	0.5))	

plt.show()	

In	this	example,	I'm	calling	my	original	function	of	just	a	normal	distribution,	but	I'm	going	to	render
another	normal	distribution	here	as	well,	with	a	mean	around	1.0	and	a	standard	deviation	of	0.5.	Then,	I'm
going	to	show	those	two	together	so	you	can	see	how	they	compare	to	each	other.

You	can	see	that	by	default,	matplotlib	chooses	different	colors	for	each	graph	automatically	for	you,	which
is	very	nice	and	handy	of	it.





Saving	graphs	as	images
If	I	want	to	save	this	graph	to	a	file,	maybe	I	want	to	include	it	in	a	document	or	something,	I	can	do
something	like	the	following	code:	plt.plot(x,	norm.pdf(x))	plt.plot(x,	norm.pdf(x,	1.0,	0.5))
plt.savefig('C:\\Users\\Frank\\MyPlot.png',	format='png')

Instead	of	just	calling	plt.show(),	I	can	call	plt.savefig()	with	a	path	to	where	I	want	to	save	this	file	and
what	format	I	want	it	in.

You'll	want	to	change	that	to	an	actual	path	that	exists	on	your	machine	if	you're	following	along.	You
probably	don't	have	a	Users\Frank	folder	on	your	system.	Remember	too	that	if	you're	on	Linux	or	macOS,
instead	of	a	backslash	you're	going	to	use	forward	slashes,	and	you're	not	going	to	have	a	drive	letter.
With	all	of	these	Python	Notebooks,	whenever	you	see	a	path	like	this,	make	sure	that	you	change	it	to	an
actual	path	that	works	on	your	system.	I	am	on	Windows	here,	and	I	do	have	a	Users\Frank	folder,	so	I	can
go	ahead	and	run	that.	If	I	check	my	file	system	under	Users\Frank,	I	have	a	MyPlot.png	file	that	I	can	open	up
and	look	at,	and	I	can	use	that	in	whatever	document	I	want.

That's	pretty	cool.	One	other	quick	thing	to	note	is	that	depending	on	your	setup,	you	may	have
permissions	issues	when	you	come	to	save	the	file.	You'll	just	need	to	find	the	folder	that	works	for	you.
On	Windows,	your	Users\Name	folder	is	usually	a	safe	bet.	Alright,	let's	move	on.





Adjusting	the	axes
Let's	say	that	I	don't	like	the	default	choices	of	the	axes	of	this	value	in	the	previous	graph.	It's
automatically	fitting	it	to	the	tightest	set	of	the	axis	values	that	you	can	find,	which	is	usually	a	good	thing
to	do,	but	sometimes	you	want	things	on	an	absolute	scale.	Look	at	the	following	code:

axes	=	plt.axes()	

axes.set_xlim([-5,	5])	

axes.set_ylim([0,	1.0])	

axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5])	

axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	

plt.plot(x,	norm.pdf(x))	

plt.plot(x,	norm.pdf(x,	1.0,	0.5))	

plt.show()	

In	this	example,	first	I	get	the	axes	using	plt.axes.	Once	I	have	these	axes	objects,	I	can	adjust	them.	By
calling	set_xlim,	I	can	set	the	x	range	from	-5	to	5	and	with	set	set_ylim,	I	set	the	y	range	from	0	to	1.	You
can	see	in	the	below	output,	that	my	x	values	are	ranging	from	-5	to	5,	and	y	goes	from	0	to	1.	I	can	also
have	explicit	control	over	where	the	tick	marks	on	the	axes	are.	So	in	the	previous	code,	I'm	saying	I	want
the	x	ticks	to	be	at	-5,	-4,	-	3,	etc.,	and	y	ticks	from	0	to	1	at	0.1	increments	using	the	set_xticks()	and
set_yticks()	functions.	Now	I	could	use	the	arange	function	to	do	that	more	compactly,	but	the	point	is	you
have	explicit	control	over	where	exactly	those	tick	marks	happen,	and	you	can	also	skip	some.	You	can
have	them	at	whatever	increments	you	want	or	whatever	distribution	you	want.	Beyond	that,	it's	the	same
thing.

Once	I've	adjusted	my	axes,	I	just	called	plot()	with	the	functions	that	I	want	to	plot	and	called	show()	to
display	it.	Sure	enough,	there	you	have	the	result.



axes	=	plt.axes()	axes.set_xlim([-5,	5])	axes.set_ylim([0,	1.0])	axes.set_xticks([-5,	-4,	-3,
-2,	-1,	0,	1,	2,	3,	4,	5])	axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])
axes.grid()

plt.plot(x,	norm.pdf(x))	plt.plot(x,	norm.pdf(x,	1.0,	0.5))	plt.show()

By	executing	the	above	code,	I	get	nice	little	grid	lines.	That	makes	it	a	little	bit	easier	to
see	where	a	specific	point	is,	although	it	clutters	things	up	a	little	bit.	It's	a	little	bit	of	a
stylistic	choice	there.





Changing	line	types	and	colors
What	if	I	want	to	play	games	with	the	line	types	and	colors?	You	can	do	that	too.

axes	=	plt.axes()	

axes.set_xlim([-5,	5])	

axes.set_ylim([0,	1.0])	

axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5])	

axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	

axes.grid()	

plt.plot(x,	norm.pdf(x),	'b-')	

plt.plot(x,	norm.pdf(x,	1.0,	0.5),	'r:')	

plt.show()	

So	you	see	in	the	preceding	code,	there's	actually	an	extra	parameter	on	the	plot()	functions	at	the	end
where	I	can	pass	a	little	string	that	describes	the	style	of	a	line.	In	this	first	example,	what	b-	indicates	is	I
want	a	blue,	solid	line.	The	b	stands	for	blue,	and	the	dash	means	a	solid	line.	For	my	second	plot()
function,	I'm	going	to	plot	it	in	red,	that's	what	the	r	means,	and	the	colon	means	I'm	going	to	plot	it	with	a
dotted	line.

If	I	run	that,	you	can	see	in	the	above	graph	what	it	does,	and	you	can	change	different	types	of	line	styles.

In	addition,	you	can	do	a	double	dash	(--).

axes	=	plt.axes()	

axes.set_xlim([-5,	5])	

axes.set_ylim([0,	1.0])	

axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5])	

axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	

axes.grid()	

plt.plot(x,	norm.pdf(x),	'b-')	

plt.plot(x,	norm.pdf(x,	1.0,	0.5),	'r--')	

plt.show()	

The	preceding	code	gives	you	dashed	red	line	as	a	line	style	as	shown	in	the	following	graph	image:



I	can	also	do	a	dash	dot	combination	(-.).

axes	=	plt.axes()	

axes.set_xlim([-5,	5])	

axes.set_ylim([0,	1.0])	

axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5])	

axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	

axes.grid()	

plt.plot(x,	norm.pdf(x),	'b-')	

plt.plot(x,	norm.pdf(x,	1.0,	0.5),	'r-.')	

plt.show()	

You	get	an	output	that	looks	like	the	following	graph	image:

So,	those	are	the	different	choices	there.	I	could	even	make	it	green	with	vertical	slashes	(g:).

axes	=	plt.axes()	

axes.set_xlim([-5,	5])	

axes.set_ylim([0,	1.0])	

axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5])	

axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	

axes.grid()	

plt.plot(x,	norm.pdf(x),	'b-')	

plt.plot(x,	norm.pdf(x,	1.0,	0.5),	'	g:')	

plt.show()	

I'll	get	the	following	output:



Have	some	fun	with	that	if	you	want,	experiment	with	different	values,	and	you	can	get	different	line
styles.



axes	=	plt.axes()

axes.set_xlim([-5,	5])	axes.set_ylim([0,	1.0])	axes.set_xticks([-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,
5])	axes.set_yticks([0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0])	axes.grid()

plt.xlabel('Greebles')	plt.ylabel('Probability')	plt.plot(x,	norm.pdf(x),	'b-')	plt.plot(x,
norm.pdf(x,	1.0,	0.5),	'r:')	plt.legend(['Sneetches',	'Gacks'],	loc=4)	plt.show()

Into	the	legend,	you	pass	in	basically	a	list	of	what	you	want	to	name	each	graph.	So,	my
first	graph	is	going	to	be	called	Sneetches,	and	my	second	graph	is	going	to	be	called
Gacks,	and	the	loc	parameter	indicates	what	location	you	want	it	at,	where	4	represents
the	lower	right-hand	corner.	Let's	go	ahead	and	run	the	code,	and	you	should	see	the

following:	

You	can	see	that	I'm	plotting	Greebles	versus	Probability	for	both	Sneetches	and	Gacks.	A
little	Dr.	Seuss	reference	for	you	there.	So	that's	how	you	set	axes	labels	and	legends.



plt.xkcd()

	

fig	=	plt.figure()

ax	=	fig.add_subplot(1,	1,	1)

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

plt.xticks([])

plt.yticks([])

ax.set_ylim([-30,	10])

	

data	=	np.ones(100)

data[70:]	-=	np.arange(30)

	

plt.annotate(

'THE	DAY	I	REALIZED\nI	COULD	COOK	BACON\nWHENEVER	I	WANTED',

xy=(70,	1),	arrowprops=dict(arrowstyle='->'),	xytext=(15,	-10))

	

plt.plot(data)

	

plt.xlabel('time')

plt.ylabel('my	overall	health')



In	this	example,	you	call	plt.xkcd(),	which	puts	Matplotlib	in	XKCD	mode.	After	you
do	that,	things	will	just	have	a	style	with	kind	of	a	comic	book	font	and	squiggly	lines
automatically.	This	little	simple	example	will	show	a	funny	little	graph	where	we	are
plotting	your	health	versus	time,	where	your	health	takes	a	steep	decline	once	you	realize
you	can	cook	bacon	whenever	you	want	to.	All	we're	doing	there	is	using	the	xkcd()
method	to	go	into	that	mode.	You	can	see	the	results	below:

There's	a	little	bit	of	interesting	Python	here	in	how	we're	actually	putting	this	graph
together.	We're	starting	out	by	making	a	data	line	that	is	nothing	but	the	value	1	across	100
data	points.	Then	we	use	the	old	Python	list	slicing	operator	to	take	everything	after	the
value	of	70,	and	we	subtract	off	from	that	sub-list	of	30	items,	the	range	of	0	through	30.
So	that	has	the	effect	of	subtracting	off	a	larger	value	linearly	as	you	get	past	70,	which
results	in	that	line	heading	downward	down	to	0	beyond	the	point	70.

So,	it's	a	little	example	of	some	Python	list	slicing	in	action	there,	and	a	little	creative	use
of	the	arange	function	to	modify	your	data.





Generating	pie	charts
Now,	to	go	back	to	the	real	world,	we	can	remove	XKCD	mode	by	calling	rcdefaults()	on	Matplotlib,	and
we	can	get	back	to	normal	mode	here.

If	you	want	a	pie	chart,	all	you	have	to	do	is	call	plt.pie	and	give	it	an	array	of	your	values,	colors,	labels,
and	whether	or	not	you	want	items	exploded,	and	if	so,	by	how	much.	Here's	the	code:

#	Remove	XKCD	mode:	

plt.rcdefaults()	

	

values	=	[12,	55,	4,	32,	14]	

colors	=	['r',	'g',	'b',	'c',	'm']	

explode	=	[0,	0,	0.2,	0,	0]	

labels	=	['India',	'United	States',	'Russia',	'China',	'Europe']	

plt.pie(values,	colors=	colors,	labels=labels,	explode	=	explode)	

plt.title('Student	Locations')	

plt.show()	

You	can	see	in	this	code	that	I'm	creating	a	pie	chart	with	the	values	12,	55,	4,	32,	and	14.	I'm	assigning
explicit	colors	to	each	one	of	those	values,	and	explicit	labels	to	each	one	of	those	values.	I'm	exploding
out	the	Russian	segment	of	the	pie	by	20%,	and	giving	this	plot	a	title	of	Student	Locations	and	showing	it.
The	following	is	the	output	you	should	see:

That's	all	there	is	to	it.



values	=	[12,	55,	4,	32,	14]

colors	=	['r',	'g',	'b',	'c',	'm']

plt.bar(range(0,5),	values,	color=	colors)	plt.show()

I've	defined	an	array	of	values	and	an	array	of	colors,	and	just	plot	the	data.	The	above
code	plots	from	the	range	of	0	to	5,	using	the	y	values	from	the	values	array	and	using
the	explicit	list	of	colors	listed	in	the	colors	array.	Go	ahead	and	show	that,	and	there	you

have	your	bar	chart:	





Generating	scatter	plots
A	scatter	plot	is	something	we'll	see	pretty	often	in	this	book.	So,	say	you	have	a	couple	of	different
attributes	you	want	to	plot	for	the	same	set	of	people	or	things.	For	example,	maybe	we're	plotting	ages
against	incomes	for	each	person,	where	each	dot	represents	a	person	and	the	axes	represent	different
attributes	of	those	people.

The	way	you	do	that	with	a	scatter	plot	is	you	call	plt.scatter()	using	the	two	axes	that	you	want	to	define,
that	is,	the	two	attributes	that	contain	data	that	you	want	to	plot	against	each	other.

Let's	say	I	have	a	random	distribution	in	X	and	Y	and	I	scatter	those	on	the	scatter	plot,	and	I	show	it:

from	pylab	import	randn	

	

X	=	randn(500)	

Y	=	randn(500)	

plt.scatter(X,Y)	

plt.show()	

You	get	the	following	scatter	plot	as	output:

This	is	what	it	looks	like,	pretty	cool.	You	can	see	the	sort	of	a	concentration	in	the	center	here,	because
of	the	normal	distribution	that's	being	used	in	both	axes,	but	since	it	is	random,	there's	no	real	correlation
between	those	two.



incomes	=	np.random.normal(27000,	15000,	10000)	plt.hist(incomes,	50)	plt.show()

In	this	example,	I	call	a	normal	distribution	centered	on	27,000,	with	a	standard	deviation
of	15,000	with	10,000	data	points.	Then,	I	just	call	pyplot's	histogram	function,	that	is,
hist(),	and	specify	the	input	data	and	the	number	of	buckets	that	we	want	to	group
things	into	in	our	histogram.	Then	I	call	show()	and	the	rest	is	magic.





Generating	box-and-whisker	plots
Finally,	let's	look	at	box-and-whisker	plots.	Remember	in	the	previous	chapter,	when	we	talked	about
percentiles	I	touched	on	this	a	little	bit.

Again,	with	a	box-and-whisker	plot,	the	box	represents	the	two	inner	quartiles	where	50%	of	your	data
resides.	Conversely,	another	25%	resides	on	either	side	of	that	box;	the	whiskers	(dotted	lines	in	our
example)	represent	the	range	of	the	data	except	for	outliers.

We	define	outliers	in	a	box-and-whisker	plot	as	anything	beyond	1.5	times	the	interquartile	range,	or	the
size	of	the	box.	So,	we	take	the	size	of	the	box	times	1.5,	and	up	to	that	point	on	the	dotted	whiskers,	we
call	those	parts	outer	quartiles.	But	anything	outside	of	the	outer	quartiles	is	considered	an	outlier,	and
that's	what	the	lines	beyond	the	outer	quartiles	represent.	That's	where	we	are	defining	outliers	based	on
our	definition	with	the	box-and-whisker	plot.

Some	points	to	remember	about	box-and-whisker	plots:

They	are	useful	for	visualizing	the	spread	and	skew	of	data
The	line	in	the	middle	of	the	box	represents	the	median	of	the	data,	and	the	box	represents	the	bounds
of	the	1st	and	3rd	quartiles
Half	of	the	data	exists	within	the	box
The	"whiskers"	indicate	the	range	of	the	data-except	for	outliers,	which	are	plotted	outside	the
whiskers.
Outliers	are	1.5	times	or	more	the	interquartile	range.

Now,	just	to	give	you	an	example	here,	we	have	created	a	fake	dataset.	The	following	example	creates
uniformly	distributed	random	numbers	between	-40	and	60,	plus	a	few	outliers	above	100	and	below	-100:

uniformSkewed	=	np.random.rand(100)	*	100	-	40	

high_outliers	=	np.random.rand(10)	*	50	+	100	

low_outliers	=	np.random.rand(10)	*	-50	-	100	

data	=	np.concatenate((uniformSkewed,	high_outliers,	low_outliers))	

plt.boxplot(data)	

plt.show()	

In	the	code,	we	have	a	uniform	random	distribution	of	data	(uniformSkewed).	Then	we	added	a	few	outliers
on	the	high	end	(high_outliers)	and	a	few	negative	outliers	(low_outliers)	as	well.	Then	we	concatenated
these	lists	together	and	created	a	single	dataset	from	these	three	different	sets	that	we	created	using
NumPy.	We	then	took	that	combined	dataset	of	uniform	data	and	a	few	outliers	and	we	plotted	using
plt.boxplot(),	and	that's	how	you	get	a	box-and-whisker	plot.	Call	show()	to	visualize	it,	and	there	you	go.



You	can	see	that	the	graph	is	showing	the	box	that	represents	the	inner	50%	of	all	data,	and	then	we	have
these	outlier	lines	where	we	can	see	little	crosses	(they	may	be	circles	in	your	version)	for	each
individual	outlier	that	lies	in	that	range.





Try	it	yourself
Alright,	that's	your	crash	course	in	Matplotlib.	Time	to	get	your	hands	on	it,	and	actually	do	some
exercises	here.

As	your	challenge,	I	want	you	to	create	a	scatter	plot	that	represents	random	data	that	you	fabricate	on	age
versus	time	spent	watching	TV,	and	you	can	make	anything	you	want,	really.	If	you	have	a	different
fictional	data	set	in	your	head	that	you	like	to	play	with,	have	some	fun	with	it.	Create	a	scatter	plot	that
plots	two	random	sets	of	data	against	each	other	and	label	your	axes.	Make	it	look	pretty,	play	around
with	it,	have	fun	with	it.	Everything	you	need	for	reference	and	for	examples	should	be	in	this	IPython
Notebook.	It's	kind	of	a	cheat	sheet,	if	you	will,	for	different	things	you	might	need	to	do	for	generating
different	kinds	of	graphs	and	different	styles	of	graphs.	I	hope	it	proves	useful.	Now	it's	time	to	get	back
to	the	statistics.

	





Covariance	and	correlation
Next,	we're	going	to	talk	about	covariance	and	correlation.	Let's	say	I	have	two	different	attributes	of
something	and	I	want	to	see	if	they're	actually	related	to	each	other	or	not.	This	section	will	give	you	the
mathematical	tools	you	need	to	do	so,	and	we'll	dive	into	some	examples	and	actually	figure	out
covariance	and	correlation	using	Python.	These	are	ways	of	measuring	whether	two	different	attributes
are	related	to	each	other	in	a	set	of	data,	which	can	be	a	very	useful	thing	to	find	out.

	





Defining	the	concepts
Imagine	we	have	a	scatter	plot,	and	each	one	of	the	data	points	represents	a	person	that	we	measured,	and
we're	plotting	their	age	on	one	axis	versus	their	income	on	another.	Each	one	of	these	dots	would
represent	a	person,	for	example	their	x	value	represents	their	age	and	the	y	value	represents	their	income.
I'm	totally	making	this	up,	this	is	fake	data.

Now	if	I	had	a	scatter	plot	that	looks	like	the	left	one	in	the	preceding	image,	you	see	that	these	values
tend	to	lie	all	over	the	place,	and	this	would	tell	you	that	there's	no	real	correlation	between	age	and
income	based	on	this	data.	For	any	given	age,	there	can	be	a	huge	range	of	incomes	and	they	tend	to	be
clustered	around	the	middle,	but	we're	not	really	seeing	a	very	clear	relationship	between	these	two
different	attributes	of	age	and	income.	Now	in	contrast,	in	the	scatter	plot	on	the	right	you	can	see	there's	a
very	clear	linear	relationship	between	age	and	income.

So,	covariance	and	correlation	give	us	a	means	of	measuring	just	how	tight	these	things	are	correlated.	I
would	expect	a	very	low	correlation	or	covariance	for	the	data	in	the	left	scatter	plot,	but	a	very	high
covariance	and	correlation	for	the	data	in	the	right	scatter	plot.	So	that's	the	concept	of	covariance	and
correlation.	It	measures	how	much	these	two	attributes	that	I'm	measuring	seem	to	depend	on	each	other.





Measuring	covariance
Measuring	covariance	mathematically	is	a	little	bit	hard,	but	I'll	try	to	explain	it.	These	are	the	steps:

Think	of	the	data	sets	for	the	two	variables	as	high-dimensional	vectors
Convert	these	to	vectors	of	variances	from	the	mean
Take	the	dot	product	(cosine	of	the	angle	between	them)	of	the	two	vectors
Divide	by	the	sample	size

It's	really	more	important	that	you	understand	how	to	use	it	and	what	it	means.	To	actually	derive	it,	think
of	the	attributes	of	the	data	as	high	dimensional	vectors.	What	we're	going	to	do	on	each	attribute	for	each
data	point	is	compute	the	variance	from	the	mean	at	each	point.	So	now	I	have	these	high	dimensional
vectors	where	each	data	point,	each	person,	if	you	will,	corresponds	to	a	different	dimension.

I	have	one	vector	in	this	high	dimensional	space	that	represents	all	the	variances	from	the	mean	for,	let's
say,	age	for	one	attribute.	Then	I	have	another	vector	that	represents	all	the	variances	from	the	mean	for
some	other	attribute,	like	income.	What	I	do	then	is	I	take	these	vectors	that	measure	the	variances	from
the	mean	for	each	attribute,	and	I	take	the	dot	product	between	the	two.	Mathematically,	that's	a	way	of
measuring	the	angle	between	these	high	dimensional	vectors.	So	if	they	end	up	being	very	close	to	each
other,	that	tells	me	that	these	variances	are	pretty	much	moving	in	lockstep	with	each	other	across	these
different	attributes.	If	I	take	that	final	dot	product	and	divide	it	by	the	sample	size,	that's	how	I	end	up	with
the	covariance	amount.

Now	you're	never	going	to	have	to	actually	compute	this	yourself	the	hard	way.	We'll	see	how	to	do	this
the	easy	way	in	Python,	but	conceptually,	that's	how	it	works.

Now	the	problem	with	covariance	is	that	it	can	be	hard	to	interpret.	If	I	have	a	covariance	that's	close	to
zero,	well,	I	know	that's	telling	me	there's	not	much	correlation	between	these	variables	at	all,	but	a	large
covariance	implies	there	is	a	relationship.	But	how	large	is	large?	Depending	on	the	units	I'm	using,	there
might	be	very	different	ways	of	interpreting	that	data.	That's	a	problem	that	correlation	solves.





Correlation
Correlation	normalizes	everything	by	the	standard	deviation	of	each	attribute	(just	divide	the	covariance
by	the	standard	deviations	of	both	variables	and	that	normalizes	things).	By	doing	so,	I	can	say	very
clearly	that	a	correlation	of	-1	means	there's	a	perfect	inverse	correlation,	so	as	one	value	increases,	the
other	decreases,	and	vice	versa.	A	correlation	of	0	means	there's	no	correlation	at	all	between	these	two
sets	of	attributes.	A	correlation	of	1	would	imply	perfect	correlation,	where	these	two	attributes	are
moving	in	exactly	the	same	way	as	you	look	at	different	data	points.

Remember,	correlation	does	not	imply	causation.	Just	because	you	find	a	very	high
correlation	value	does	not	mean	that	one	of	these	attributes	causes	the	other.	It	just
means	there's	a	relationship	between	the	two,	and	that	relationship	could	be	caused	by
something	completely	different.	The	only	way	to	really	determine	causation	is	through	a
controlled	experiment,	which	we'll	talk	about	more	later.

	





Computing	covariance	and	correlation	in	Python
Alright,	let's	get	our	hands	dirty	with	covariance	and	correlation	here	with	some	actual	Python	code.	So
again,	you	can	think	conceptually	of	covariance	as	taking	these	multi-dimensional	vectors	of	variances
from	the	mean	for	each	attribute	and	computing	the	angle	between	them	as	a	measure	of	the	covariance.
The	math	for	doing	that	is	a	lot	simpler	than	it	sounds.	We're	talking	about	high	dimensional	vectors.	It
sounds	like	Stephen	Hawking	stuff,	but	really,	from	a	mathematical	standpoint	it's	pretty	straightforward.

	





Computing	correlation	–	The	hard	way
I'm	going	to	start	by	doing	this	the	hard	way.	NumPy	does	have	a	method	to	just	compute	the	covariance
for	you,	and	we'll	talk	about	that	later,	but	for	now	I	want	to	show	that	you	can	actually	do	this	from	first
principles:

%matplotlib	inline	

	

import	numpy	as	np	

from	pylab	import	*	

	

def	de_mean(x):	

				xmean	=	mean(x)	

				return	[xi	-	xmean	for	xi	in	x]	

	

def	covariance(x,	y):	

				n	=	len(x)	

				return	dot(de_mean(x),	de_mean(y))	/	(n-1)	

Covariance,	again,	is	defined	as	the	dot	product,	which	is	a	measure	of	the	angle	between	two	vectors,	of
a	vector	of	the	deviations	from	the	mean	for	a	given	set	of	data	and	the	deviations	from	the	mean	for
another	given	set	of	data	for	the	same	data's	data	points.	We	then	divide	that	by	n	-	1	in	this	case,	because
we're	actually	dealing	with	a	sample.

So	de_mean(),	our	deviation	from	the	mean	function	is	taking	in	a	set	of	data,	x,	actually	a	list,	and	it's
computing	the	mean	of	that	set	of	data.	The	return	line	contains	a	little	bit	of	Python	trickery	for	you.	The
syntax	is	saying,	I'm	going	to	create	a	new	list,	and	go	through	every	element	in	x,	call	it	xi,	and	then	return
the	difference	between	xi	and	the	mean,	xmean,	for	that	entire	dataset.	This	function	returns	a	new	list	of
data	that	represents	the	deviations	from	the	mean	for	each	data	point.

My	covariance()	function	will	do	that	for	both	sets	of	data	coming	in,	divided	by	the	number	of	data	points
minus	1.	Remember	that	thing	about	sample	versus	population	in	the	previous	chapter?	Well,	that's	coming
into	play	here.	Then	we	can	just	use	those	functions	and	see	what	happens.

To	expand	this	example,	I'm	going	to	fabricate	some	data	that	is	going	to	try	to	find	a	relationship	between
page	speeds,	that,	is	how	quickly	a	page	renders	on	a	website,	and	how	much	people	spend.	For	example,
at	Amazon	we	were	very	concerned	about	the	relationship	between	how	quickly	pages	render	and	how
much	money	people	spend	after	that	experience.	We	wanted	to	know	if	there	is	an	actual	relationship
between	how	fast	the	website	is	and	how	much	money	people	actually	spend	on	the	website.	This	is	one
way	you	might	go	about	figuring	that	out.	Let's	just	generate	some	normally	distributed	random	data	for
both	page	speeds	and	purchase	amounts,	and	since	it's	random,	there's	not	going	to	be	a	real	correlation
between	them.

pageSpeeds	=	np.random.normal(3.0,	1.0,	1000)	

purchaseAmount	=	np.random.normal(50.0,	10.0,	1000)	

	

scatter(pageSpeeds,	purchaseAmount)	

	

covariance	(pageSpeeds,	purchaseAmount)	

So	just	as	a	sanity	check	here	we'll	start	off	by	scatter	plotting	this	stuff:



You'll	see	that	it	tends	to	cluster	around	the	middle	because	of	the	normal	distribution	on	each	attribute,
but	there's	no	real	relationship	between	the	two.	For	any	given	page	speed	is	a	wide	variety	of	amount
spent,	and	for	any	given	amount	spent	there's	a	wide	variety	of	page	speeds,	so	no	real	correlation	there
except	for	ones	that	are	coming	out	the	randomness	or	through	the	nature	of	the	normal	distribution.	Sure
enough,	if	we	compute	the	covariance	in	these	two	sets	of	attributes,	we	end	up	with	a	very	small	value,
-0.07.	So	that's	a	very	small	covariance	value,	close	to	zero.	That	implies	there's	no	real	relationship
between	these	two	things.

Now	let's	make	life	a	little	bit	more	interesting.	Let's	actually	make	the	purchase	amount	a	real	function	of
page	speed.

purchaseAmount	=	np.random.normal(50.0,	10.0,	1000)	/	pageSpeeds	

	

scatter(pageSpeeds,	purchaseAmount)	

	

covariance	(pageSpeeds,	purchaseAmount)	

Here,	we	are	keeping	things	a	little	bit	random,	but	we	are	creating	a	real	relationship	between	these	two
sets	of	values.	For	a	given	user,	there's	a	real	relationship	between	the	page	speeds	they	encounter	and	the
amount	that	they	spend.	If	we	plot	that	out,	we	can	see	the	following	output:

You	can	see	that	there's	actually	this	little	curve	where	things	tend	to	be	tightly	aligned.	Things	get	a	little



bit	wonky	near	the	bottom,	just	because	of	how	random	things	work	out.	If	we	compute	the	covariance,	we
end	up	with	a	much	larger	value,	-8,	and	it's	the	magnitude	of	that	number	that	matters.	The	sign,	positive
or	negative,	just	implies	a	positive	or	negative	correlation,	but	that	value	of	8	says	that's	a	much	higher
value	than	zero.	So	there's	something	going	on	there,	but	again	it's	hard	to	interpret	what	8	actually	means.

That's	where	the	correlation	comes	in,	where	we	normalize	everything	by	the	standard	deviations	as
shown	in	the	following	code:

def	correlation(x,	y):	

stddevx	=	x.std()	

stddevy	=	y.std()	

return	covariance(x,y)	/	stddevx	/	stddevy		#In	real	life	you'd	check	for	divide	by	zero	here	

	

correlation(pageSpeeds,	purchaseAmount)	

Again,	doing	that	from	first	principles,	we	can	take	the	correlation	between	two	sets	of	attributes,
compute	the	standard	deviation	of	each,	then	compute	the	covariance	between	these	two	things,	and	divide
by	the	standard	deviations	of	each	dataset.	That	gives	us	the	correlation	value,	which	is	normalized	to	-1
to	1.	We	end	up	with	a	value	of	-0.4,	which	tells	us	there	is	some	correlation	between	these	two	things	in
the	negative	direction:

It's	not	a	perfect	line,	that	would	be	-1,	but	there's	something	interesting	going	on	there.

A	-1	correlation	coefficient	means	perfect	negative	correlation,	0	means	no	correlation,
and	1	means	perfect	positive	correlation.





Computing	correlation	–	The	NumPy	way
Now,	NumPy	can	actually	compute	correlation	for	you	using	the	corrcoef()	function.	Let's	look	at	the
following	code:

np.corrcoef(pageseeds,	purchaseAmount)	

This	single	line	gives	the	following	output:

array([(1.									,-046728788],	

						[-0.46728788],	1.							])	

So,	if	we	wanted	to	do	this	the	easy	way,	we	could	just	use	np.corrcoef(pageSpeeds,	purchaseAmount),	and	what
that	gives	you	back	is	an	array	that	gives	you	the	correlation	between	every	possible	combination	of	the
sets	of	data	that	you	pass	in.	The	way	to	read	the	output	is:	the	1	implies	there	is	a	perfect	correlation
between	comparing	pageSpeeds	to	itself	and	purchaseAmount	to	itself,	which	is	expected.	But	when	you	start
comparing	pageSpeeds	to	purchaseAmount	or	purchaseAmount	to	the	pageSpeeds,	you	end	up	with	the	-0.4672	value,
which	is	roughly	what	we	got	when	we	did	it	the	hard	way.	There's	going	to	be	little	precision	errors,	but
it's	not	really	important.

Now	we	could	force	a	perfect	correlation	by	fabricating	a	totally	linear	relationship,	so	let's	take	a	look
at	an	example	of	that:

purchaseAmount	=	100	-	pageSpeeds	*	3	

	

scatter(pageSpeeds,	purchaseAmount)	

	

correlation	(pageSpeeds,	purchaseAmount)	

And	again,	here	we	would	expect	the	correlation	to	come	out	to	-1	for	a	perfect	negative	correlation,	and
in	fact,	that's	what	we	end	up	with:

Again,	a	reminder:	Correlation	does	not	imply	causality.	Just	because	people	might	spend	more	if	they
have	faster	page	speeds,	maybe	that	just	means	that	they	can	afford	a	better	Internet	connection.	Maybe
that	doesn't	mean	that	there's	actually	a	causation	between	how	fast	your	pages	render	and	how	much
people	spend,	but	it	tells	you	there's	an	interesting	relationship	that's	worth	investigating	more.	You	cannot



say	anything	about	causality	without	running	an	experiment,	but	correlation	can	tell	you	what	experiments
you	might	want	to	run.





Correlation	activity
So	get	your	hands	dirty,	roll	up	your	sleeves,	I	want	you	to	use	the	numpy.cov()	function.	That's	actually	a
way	to	get	NumPy	to	compute	covariance	for	you.	We	saw	how	to	compute	correlation	using	the	corrcoef()
function.	So	go	back	and	rerun	these	examples	just	using	the	numpy.cov()	function	and	see	if	you	get	the	same
results	or	not.	It	should	be	pretty	darn	close,	so	instead	of	doing	it	the	hard	way	with	the	covariance
function	that	I	wrote	from	scratch,	just	use	NumPy	and	see	if	you	can	get	the	same	results.	Again,	the	point
of	this	exercise	is	to	get	you	familiar	with	using	NumPy	and	applying	it	to	actual	data.	So	have	at	it,	see
where	you	get.

And	there	you	have	it,	covariance	and	correlation	both	in	theory	and	in	practice.	A	very	useful	technique
to	have,	so	definitely	remember	this	section.	Let's	move	on.

	





Conditional	probability
Next,	we're	going	to	talk	about	conditional	probability.	It's	a	very	simple	concept.	It's	trying	to	figure	out
the	probability	of	something	happening	given	that	something	else	occurred.	Although	it	sounds	simple,	it
can	be	actually	very	difficult	to	wrap	your	head	around	some	of	the	nuances	of	it.	So	get	an	extra	cup	of
coffee,	make	sure	your	thinking	cap's	on,	and	if	you're	ready	for	some	more	challenging	concepts	here.
Let's	do	this.

Conditional	probability	is	a	way	to	measure	the	relationship	between	two	things	happening	to	each	other.
Let's	say	I	want	to	find	the	probability	of	an	event	happening	given	that	another	event	already	happened.
Conditional	probability	gives	you	the	tools	to	figure	that	out.

What	I'm	trying	to	find	out	with	conditional	probability	is	if	I	have	two	events	that	depend	on	each	other.
That	is,	what's	the	probability	that	both	will	occur?

In	mathematical	notation,	the	way	we	indicate	things	here	is	that	P(A,B)	represents	the	probability	of	both
A	and	B	occurring	independent	of	each	other.	That	is,	what's	the	probability	of	both	of	these	things
happening	irrespective	of	everything	else.

Whereas	this	notation,	P(B|A),	is	read	as	the	probability	of	B	given	A.	So,	what	is	the	probability	of	B
given	that	event	A	has	already	occurred?	It's	a	little	bit	different,	and	these	things	are	related	like	this:

The	probability	of	B	given	A	is	equal	to	the	probability	of	A	and	B	occurring	over	the	probability	of	A
alone	occurring,	so	this	teases	out	the	probability	of	B	being	dependent	on	the	probability	of	A.

It'll	make	more	sense	with	an	example	here,	so	bear	with	me.

Let's	say	that	I	give	you,	my	readers,	two	tests,	and	60%	of	you	pass	both	tests.	Now	the	first	test	was
easier,	80%	of	you	passed	that	one.	I	can	use	this	information	to	figure	out	what	percentage	of	readers
who	passed	the	first	test	also	passed	the	second.	So	here's	a	real	example	of	the	difference	between	the
probability	of	B	given	A	and	the	probability	of	A	and	B.

I'm	going	to	represent	A	as	the	probability	of	passing	the	first	test,	and	B	as	the	probability	of	passing	the
second	test.	What	I'm	looking	for	is	the	probability	of	passing	the	second	test	given	that	you	passed	the
first,	that	is,	P	(B|A).

So	the	probability	of	passing	the	second	test	given	that	you	passed	the	first	is	equal	to	the	probability	of
passing	both	tests,	P(A,B)	(I	know	that	60%	of	you	passed	both	tests	irrespective	of	each	other),	divided
by	the	probability	of	passing	the	first	test,	P(A),	which	is	80%.	It's	worked	out	to	60%	passed	both	tests,
80%	passed	the	first	test,	therefore	the	probability	of	passing	the	second	given	that	you	passed	the	first



works	out	to	75%.

OK,	it's	a	little	bit	tough	to	wrap	your	head	around	this	concept.	It	took	me	a	little	while	to	really
internalize	the	difference	between	the	probability	of	something	given	something	and	the	probability	of	two
things	happening	irrespective	of	each	other.	Make	sure	you	internalize	this	example	and	how	it's	really
working	before	you	move	on.





Conditional	probability	exercises	in	Python
Alright,	let's	move	on	and	do	another	more	complicated	example	using	some	real	Python	code.	We	can
then	see	how	we	might	actually	implement	these	ideas	using	Python.

Let's	put	conditional	probability	into	action	here	and	use	some	of	the	ideas	to	figure	out	if	there's	a
relationship	between	age	and	buying	stuff	using	some	fabricated	data.	Go	ahead	and	open	up	the
ConditionalProbabilityExercise.ipynb	here	and	follow	along	with	me	if	you	like.

What	I'm	going	to	do	is	write	a	little	bit	of	Python	code	that	creates	some	fake	data:

from	numpy	import	random	

random.seed(0)	

	

totals	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}	

purchases	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}	

totalPurchases	=	0	

for	_	in	range(100000):	

				ageDecade	=	random.choice([20,	30,	40,	50,	60,	70])	

				purchaseProbability	=	float(ageDecade)	/	100.0	

				totals[ageDecade]	+=	1	

				if	(random.random()	<	purchaseProbability):	

								totalPurchases	+=	1	

								purchases[ageDecade]	+=	1	

What	I'm	going	to	do	is	take	100,000	virtual	people	and	randomly	assign	them	to	an	age	bracket.	They	can
be	in	their	20s,	their	30s,	their	40s,	their	50s,	their	60s,	or	their	70s.	I'm	also	going	to	assign	them	a
number	of	things	that	they	bought	during	some	period	of	time,	and	I'm	going	to	weight	the	probability	of
purchasing	something	based	on	their	age.

What	this	code	ends	up	doing	is	randomly	assigning	each	person	to	an	age	group	using	the	random.choice()
function	from	NumPy.	Then	I'm	going	to	assign	a	probability	of	purchasing	something,	and	I	have	weighted
it	such	that	younger	people	are	less	likely	to	buy	stuff	than	older	people.	I'm	going	to	go	through	100,000
people	and	add	everything	up	as	I	go,	and	what	I	end	up	with	are	two	Python	dictionaries:	one	that	gives
me	the	total	number	of	people	in	each	age	group,	and	another	that	gives	me	the	total	number	of	things
bought	within	each	age	group.	I'm	also	going	to	keep	track	of	the	total	number	of	things	bought	overall.
Let's	go	ahead	and	run	that	code.

If	you	want	to	take	a	second	to	kind	of	work	through	that	code	in	your	head	and	figure	out	how	it	works,
you've	got	the	IPython	Notebook.	You	can	go	back	into	that	later	too.	Let's	take	a	look	what	we	ended	up
with.

Our	totals	dictionary	is	telling	us	how	many	people	are	in	each	age	bracket,	and	it's	pretty	evenly



distributed,	just	like	we	expected.	The	amount	purchased	by	each	age	group	is	in	fact	increasing	by	age,
so	20-year-olds	only	bought	about	3,000	things	and	70-year-olds	bought	about	11,000	things,	and	overall
the	entire	population	bought	about	45,000	things.

Let's	use	this	data	to	play	around	with	the	ideas	of	conditional	probability.	Let's	first	figure	out	what's	the
probability	of	buying	something	given	that	you're	in	your	30s.	The	notation	for	that	will	be	P(E|F)	if	we're
calling	purchase	E,	and	F	as	the	event	that	you're	in	your	30s.

Now	we	have	this	fancy	equation	that	gave	you	a	way	of	computing	P(E|F)	given	P(E,F),	and	P(E),	but
we	don't	need	that.	You	don't	just	blindly	apply	equations	whenever	you	see	something.	You	have	to	think
about	your	data	intuitively.	What	is	it	telling	us?	I	want	to	figure	out	the	probability	of	purchasing
something	given	that	you're	in	your	30s.	Well	I	have	all	the	data	I	need	to	compute	that	directly.

PEF	=	float(purchases[30])	/	float(totals[30])	

I	have	how	much	stuff	30-year-olds	purchased	in	the	purchases[30]	bucket,	and	I	know	how	many	30-
year-olds	there	are.	So	I	can	just	divide	those	two	numbers	to	get	the	ratio	of	30-year-old	purchases	over
the	number	of	30-year-olds.	I	can	then	output	that	using	the	print	command:

print	("P(purchase	|	30s):	",	PEF)	

I	end	up	with	a	probability	of	purchasing	something	given	that	you're	in	your	30s	of	being	about	30%:

P(purchase	|	30s):	0.2992959865211	

Note	that	if	you're	using	Python	2,	the	print	command	doesn't	have	the	surrounding	brackets,	so	it	would
be:

print	"p(purchase	|	30s):	",	PEF	

If	I	want	to	find	P(F),	that's	just	the	probability	of	being	30	overall,	I	can	take	the	total	number	of	30-year-
olds	divided	by	the	number	of	people	in	my	dataset,	which	is	100,000:

PF	=	float(totals[30])	/	100000.0	

print	("P(30's):	",	PF)	

Again,	remove	those	brackets	around	the	print	statement	if	you're	using	Python	2.	That	should	give	the
following	output:

P(30's):	0.16619	

I	know	the	probability	of	being	in	your	30s	is	about	16%.

We'll	now	find	out	P(E),	which	just	represents	the	overall	probability	of	buying	something	irrespective	of
your	age:

PE	=	float(totalPurchases)	/	100000.0	

print	("P(Purchase):",	PE)	

	

P(Purchase):	0.45012	

That	works	out	to	be,	in	this	example,	about	45%.	I	can	just	take	the	total	number	of	things	purchased	by



everybody	regardless	of	age	and	divide	it	by	the	total	number	of	people	to	get	the	overall	probability	of
purchase.

Alright,	so	what	do	I	have	here?	I	have	the	probability	of	purchasing	something	given	that	you're	in	your
30s	being	about	30%,	and	then	I	have	the	probability	of	purchasing	something	overall	at	about	45%.

Now	if	E	and	F	were	independent,	if	age	didn't	matter,	then	I	would	expect	the	P(E|F)	to	be	about	the
same	as	P(E).	I	would	expect	the	probability	of	buying	something	given	that	you're	in	your	30s	to	be	about
the	same	as	the	overall	probability	of	buying	something,	but	they're	not,	right?	And	because	they're
different,	that	tells	me	that	they	are	in	fact	dependent,	somehow.	So	that's	a	little	way	of	using	conditional
probability	to	tease	out	these	dependencies	in	the	data.

Let's	do	some	more	notation	stuff	here.	If	you	see	something	like	P(E)P(F)	together,	that	means	multiply
these	probabilities	together.	I	can	just	take	the	overall	probability	of	purchase	multiplied	by	the	overall
probability	of	being	in	your	30s:

print	("P(30's)P(Purchase)",	PE	*	PF)	

	

P(30's)P(Purchase)	0.07480544280000001	

That	worked	out	to	about	7.5%.

Just	from	the	way	probabilities	work,	I	know	that	if	I	want	to	get	the	probability	of	two	things	happening
together,	that	would	be	the	same	thing	as	multiplying	their	individual	probabilities.	So	it	turns	out	that
P(E,F)	happening,	is	the	same	thing	as	P(E)P(F).

print	("P(30's,	Purchase)",	float(purchases[30])	/	100000.0)	

P(30's,	Purchase)	0.04974	

Now	because	of	the	random	distribution	of	data,	it	doesn't	work	out	to	be	exactly	the	same	thing.	We're
talking	about	probabilities	here,	remember,	but	they're	in	the	same	ballpark,	so	that	makes	sense,	about
5%	versus	7%,	close	enough.

Now	that	is	different	again	from	P(E|F),	so	the	probability	of	both	being	in	your	30s	and	buying	something
is	different	than	the	probability	of	buying	something	given	that	you're	in	your	30s.

Now	let's	just	do	a	little	sanity	check	here.	We	can	check	our	equation	that	we	saw	in	the	Conditional
Probability	section	earlier,	that	said	that	the	probability	of	buying	something	given	that	you're	in	your	30s
is	the	same	as	the	probability	of	being	in	your	30s	and	buying	something	over	the	probability	of	buying
something.	That	is,	we	check	if	P(E|F)=P(E,F)/P(F).

(float(purchases[30])	/	100000.0)	/	PF		

This	gives	us:

Out	[]:0.29929598652145134	

Sure	enough,	it	does	work	out.	If	I	take	the	probability	of	buying	something	given	that	you're	in	your	30s
over	the	overall	probability,	we	end	up	with	about	30%,	which	is	pretty	much	what	we	came	up	with
originally	for	P(E|F).	So	the	equation	works,	yay!



Alright,	it's	tough	to	wrap	your	head	around	some	of	this	stuff.	It's	a	little	bit	confusing,	I	know,	but	if	you
need	to,	go	through	this	again,	study	it,	and	make	sure	you	understand	what's	going	on	here.	I've	tried	to
put	in	enough	examples	here	to	illustrate	different	combinations	of	thinking	about	this	stuff.	Once	you've
got	it	internalized,	I'm	going	to	challenge	you	to	actually	do	a	little	bit	of	work	yourself	here.



from	numpy	import	random	random.seed(0)

	

totals	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}

purchases	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}

totalPurchases	=	0

for	_	in	range(100000):	ageDecade	=	random.choice([20,	30,	40,	50,	60,	70])
purchaseProbability	=	0.4

totals[ageDecade]	+=	1

if	(random.random()	<	purchaseProbability):	totalPurchases	+=	1

purchases[ageDecade]	+=	1

Modify	it	to	actually	not	have	a	dependency	between	purchases	and	age.	Make	that	an
evenly	distributed	chance	as	well.	See	what	that	does	to	your	results.	Do	you	end	up	with
a	very	different	conditional	probability	of	being	in	your	30s	and	purchasing	something
versus	the	overall	probability	of	purchasing	something?	What	does	that	tell	you	about
your	data	and	the	relationship	between	those	two	different	attributes?	Go	ahead	and	try
that,	and	make	sure	you	can	actually	get	some	results	from	this	data	and	understand
what's	going	on,	and	I'll	run	through	my	own	solution	to	that	exercise	in	just	a	minute.

So	that's	conditional	probability,	both	in	theory	and	in	practice.	You	can	see	there's	a	lot
of	little	nuances	to	it	and	a	lot	of	confusing	notation.	Go	back	and	go	through	this	section
again	if	you	need	to	wrap	your	head	around	it.	I	gave	you	a	homework	assignment,	so	go
off	and	do	that	now,	see	if	you	can	actually	modify	my	code	in	that	IPython	Notebook	to
produce	a	constant	probability	of	purchase	for	those	different	age	groups.	Come	back	and
we'll	take	a	look	at	how	I	solved	that	problem	and	what	my	results	were.





My	assignment	solution
Did	you	do	your	homework?	I	hope	so.	Let's	take	a	look	at	my	solution	to	the	problem	of	seeing	how
conditional	probability	tells	us	about	whether	there's	a	relationship	between	age	and	purchase	probability
in	a	fake	dataset.

To	remind	you,	what	we	were	trying	to	do	was	remove	the	dependency	between	age	and	probability	of
purchasing	and	see	if	we	could	actually	reflect	that	in	our	conditional	probability	values.	Here's	what	I've
got:

from	numpy	import	random	

random.seed(0)	

	

totals	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}	

purchases	=	{20:0,	30:0,	40:0,	50:0,	60:0,	70:0}	

totalPurchases	=	0	

for	_	in	range(100000):	

				ageDecade	=	random.choice([20,	30,	40,	50,	60,	70])	

				purchaseProbability	=	0.4	

				totals[ageDecade]	+=	1	

				if	(random.random()	<	purchaseProbability):	

								totalPurchases	+=	1	

								purchases[ageDecade]	+=	1	

What	I've	done	here	is	I've	taken	the	original	snippet	of	code	for	creating	our	dictionary	of	age	groups	and
how	much	was	purchased	by	each	age	group	for	a	set	of	100,000	random	people.	Instead	of	making
purchase	probability	dependent	on	age,	I've	made	it	a	constant	probability	of	40%.	Now	we	just	have
people	randomly	being	assigned	to	an	age	group,	and	they	all	have	the	same	probability	of	buying
something.	Let's	go	ahead	and	run	that.

Now	this	time,	if	I	compute	the	P(E|F),	that	is,	the	probability	of	buying	something	given	that	you're	in
your	30s,	I	come	up	with	about	40%.

PEF	=	float(purchases[30])	/	float(totals[30])	

print	("P(purchase	|	30s):	",	PEF)	

	

P(purchase	|	30s):		0.398760454901	

If	I	compare	that	to	the	overall	probability	of	purchasing,	that	too	is	about	40%.

PE	=	float(totalPurchases)	/	100000.0	

print	("P(Purchase):",	PE)	

	

P(Purchase):	0.4003	

I	can	see	here	that	the	probability	of	purchasing	something	given	that	you're	in	your	30s	is	about	the	same
as	the	probability	of	purchasing	something	irrespective	of	your	age	(that	is,	P(E|F)	is	pretty	close	to
P(E)).	That	suggests	that	there's	no	real	relationship	between	those	two	things,	and	in	fact,	I	know	there
isn't	from	this	data.

Now	in	practice,	you	could	just	be	seeing	random	chance,	so	you'd	want	to	look	at	more	than	one	age
group.	You'd	want	to	look	at	more	than	one	data	point	to	see	if	there	really	is	a	relationship	or	not,	but	this
is	an	indication	that	there's	no	relationship	between	age	and	probability	of	purchase	in	this	sample	data
that	we	modified.



So,	that's	conditional	probability	in	action.	Hopefully	your	solution	was	fairly	close	and	had	similar
results.	If	not,	go	back	and	study	my	solution.	It's	right	there	in	the	data	files	for	this	book,
ConditionalProbabilitySolution.ipynb,	if	you	need	to	open	it	up	and	study	it	and	play	around	with	it.
Obviously,	the	random	nature	of	the	data	will	make	your	results	a	little	bit	different	and	will	depend	on
what	choice	you	made	for	the	overall	purchase	probability,	but	that's	the	idea.

And	with	that	behind	us,	let's	move	on	to	Bayes'	theorem.





Bayes'	theorem
Now	that	you	understand	conditional	probability,	you	can	understand	how	to	apply	Bayes'	theorem,	which
is	based	on	conditional	probability.	It's	a	very	important	concept,	especially	if	you're	going	into	the
medical	field,	but	it	is	broadly	applicable	too,	and	you'll	see	why	in	a	minute.

You'll	hear	about	this	a	lot,	but	not	many	people	really	understand	what	it	means	or	its	significance.	It	can
tell	you	very	quantitatively	sometimes	when	people	are	misleading	you	with	statistics,	so	let's	see	how
that	works.

First,	let's	talk	about	Bayes'	theorem	at	a	high	level.	Bayes'	theorem	is	simply	this:	the	probability	of	A
given	B	is	equal	to	the	probability	of	A	times	the	probability	of	B	given	A	over	the	probability	of	B.	So
you	can	substitute	A	and	B	with	whatever	you	want.

The	key	insight	is	that	the	probability	of	something	that	depends	on	B	depends	very	much
on	the	base	probability	of	B	and	A.	People	ignore	this	all	the	time.

One	common	example	is	drug	testing.	We	might	say,	what's	the	probability	of	being	an	actual	user	of	a
drug	given	that	you	tested	positive	for	it.	The	reason	Bayes'	theorem	is	important	is	that	it	calls	out	that
this	very	much	depends	on	both	the	probability	of	A	and	the	probability	of	B.	The	probability	of	being	a
drug	user	given	that	you	tested	positive	depends	very	much	on	the	base	overall	probability	of	being	a	drug
user	and	the	overall	probability	of	testing	positive.	The	probability	of	a	drug	test	being	accurate	depends
a	lot	on	the	overall	probability	of	being	a	drug	user	in	the	population,	not	just	the	accuracy	of	the	test.

It	also	means	that	the	probability	of	B	given	A	is	not	the	same	thing	as	the	probability	of	A	given	B.	That
is,	the	probability	of	being	a	drug	user	given	that	you	tested	positive	can	be	very	different	from	the
probability	of	testing	positive	given	that	you're	a	drug	user.	You	can	see	where	this	is	going.	That	is	a	very
real	problem	where	diagnostic	tests	in	medicine	or	drug	tests	yield	a	lot	of	false	positives.	You	can	still
say	that	the	probability	of	a	test	detecting	a	user	can	be	very	high,	but	it	doesn't	necessarily	mean	that	the
probability	of	being	a	user	given	that	you	tested	positive	is	high.	Those	are	two	different	things,	and
Bayes'	theorem	allows	you	to	quantify	that	difference.

Let's	nail	that	example	home	a	little	bit	more.

Again,	a	drug	test	can	be	a	common	example	of	applying	Bayes'	theorem	to	prove	a	point.	Even	a	highly
accurate	drug	test	can	produce	more	false	positives	than	true	positives.	So	in	our	example	here,	we're
going	to	come	up	with	a	drug	test	that	can	accurately	identify	users	of	a	drug	99%	of	the	time	and
accurately	has	a	negative	result	for	99%	of	non-users,	but	only	0.3%	of	the	overall	population	actually
uses	the	drug	in	question.	So	we	have	a	very	small	probability	of	actually	being	a	user	of	a	drug.	What
seems	like	a	very	high	accuracy	of	99%	isn't	actually	high	enough,	right?

We	can	work	out	the	math	as	follows:



Event	A	=	is	a	user	of	the	drug
Event	B	=	tested	positively	for	the	drug

So	let	event	A	mean	that	you're	a	user	of	some	drug,	and	event	B	the	event	that	you	tested	positively	for
the	drug	using	this	drug	test.

We	need	to	work	out	the	probability	of	testing	positively	overall.	We	can	work	that	out	by	taking	the	sum
of	probability	of	testing	positive	if	you	are	a	user	and	the	probability	of	testing	positive	if	you're	not	a
user.	So,	P(B)	works	out	to	1.3%	(0.99*0.003+0.01*0.997)	in	this	example.	So	we	have	a	probability	of
B,	the	probability	of	testing	positively	for	the	drug	overall	without	knowing	anything	else	about	you.

Let's	do	the	math	and	calculate	the	probability	of	being	a	user	of	the	drug	given	that	you	tested	positively.

So	the	probability	of	a	positive	test	result	given	that	you're	actually	a	drug	user	works	out	as	the
probability	of	being	a	user	of	the	drug	overall	(P(A)),	which	is	3%	(you	know	that	3%	of	the	population	is
a	drug	user)	multiplied	by	P(B|A)	that	is	the	probability	of	testing	positively	given	that	you're	a	user
divided	by	the	probability	of	testing	positively	overall	which	is	1.3%.	Again,	this	test	has	what	sounds
like	a	very	high	accuracy	of	99%.	We	have	0.3%	of	the	population	which	uses	a	drug	multiplied	by	the
accuracy	of	99%	divided	by	the	probability	of	testing	positively	overall,	which	is	1.3%.	So	the
probability	of	being	an	actual	user	of	this	drug	given	that	you	tested	positive	for	it	is	only	22.8%.	So	even
though	this	drug	test	is	accurate	99%	of	the	time,	it's	still	providing	a	false	result	in	most	of	the	cases
where	you're	testing	positive.

Even	though	P(B|A)	is	high	(99%),	it	doesn't	mean	P(A|B)	is	high.

People	overlook	this	all	the	time,	so	if	there's	one	lesson	to	be	learned	from	Bayes'	theorem,	it	is	to
always	take	these	sorts	of	things	with	a	grain	of	salt.	Apply	Bayes'	theorem	to	these	actual	problems	and
you'll	often	find	that	what	sounds	like	a	high	accuracy	rate	can	actually	be	yielding	very	misleading	results
if	you're	dealing	with	a	low	overall	incidence	of	a	given	problem.	We	see	the	same	thing	in	cancer
screening	and	other	sorts	of	medical	screening	as	well.	That's	a	very	real	problem;	there's	a	lot	of	people
getting	very,	very	real	and	very	unnecessary	surgery	as	a	result	of	not	understanding	Bayes'	theorem.	If
you're	going	into	the	medical	profession	with	big	data,	please,	please,	please	remember	this	theorem.

So	that's	Bayes'	theorem.	Always	remember	that	the	probability	of	something	given	something	else	is	not
the	same	thing	as	the	other	way	around,	and	it	actually	depends	a	lot	on	the	base	probabilities	of	both	of
those	two	things	that	you're	measuring.	It's	a	very	important	thing	to	keep	in	mind,	and	always	look	at	your
results	with	that	in	mind.	Bayes'	theorem	gives	you	the	tools	to	quantify	that	effect.	I	hope	it	proves	useful.





Summary
In	this	chapter,	we	talked	about	plotting	and	graphing	your	data	and	how	to	make	your	graphs	look	pretty
using	the	matplotlib	library	in	Python.	We	also	walked	through	the	concepts	of	covariance	and	correlation.
We	looked	at	some	examples	and	figured	out	covariance	and	correlation	using	Python.	We	analyzed	the
concept	of	conditional	probability	and	saw	some	examples	to	understand	it	better.	Finally,	we	saw	Bayes'
theorem	and	its	importance,	especially	in	the	medical	field.

In	the	next	chapter,	we'll	talk	about	predictive	models.

	



	



Predictive	Models
	

In	this	chapter,	we're	going	to	look	at	what	predictive	modeling	is	and	how	it	uses	statistics	to	predict
outcomes	from	existing	data.	We'll	cover	real	world	examples	to	understand	the	concepts	better.	We'll	see
what	regression	analysis	means	and	analyze	some	of	its	forms	in	detail.	We'll	also	look	at	an	example
which	predicts	the	price	of	a	car	for	us.

These	are	the	topics	that	we'll	cover	in	this	chapter:

Linear	regression	and	how	to	implement	it	in	Python
Polynomial	regression,	its	application	and	examples
Multivariate	regression	and	how	to	implement	it	in	Python
An	example	we'll	build	that	predicts	the	price	of	a	car	using	Python
The	concept	of	multi-level	models	and	some	things	to	know	about	them

	

	





Linear	regression
Let's	talk	about	regression	analysis,	a	very	popular	topic	in	data	science	and	statistics.	It's	all	about	trying
to	fit	a	curve	or	some	sort	of	function,	to	a	set	of	observations	and	then	using	that	function	to	predict	new
values	that	you	haven't	seen	yet.	That's	all	there	is	to	linear	regression!

So,	linear	regression	is	fitting	a	straight	line	to	a	set	of	observations.	For	example,	let's	say	that	I	have	a
bunch	of	people	that	I	measured	and	the	two	features	that	I	measured	of	these	people	are	their	weight	and
their	height:

I'm	showing	the	weight	on	the	x-axis	and	the	height	on	the	y-axis,	and	I	can	plot	all	these	data	points,	as	in
the	people's	weight	versus	their	height,	and	I	can	say,	"Hmm,	that	looks	like	a	linear	relationship,	doesn't
it?	Maybe	I	can	fit	a	straight	line	to	it	and	use	that	to	predict	new	values",	and	that's	what	linear	regression
does.	In	this	example,	I	end	up	with	a	slope	of	0.6	and	a	y-intercept	of	130.2	which	define	a	straight	line
(the	equation	of	a	straight	line	is	y=mx+b,	where	m	is	the	slope	and	b	is	the	y-intercept).	Given	a	slope
and	a	y-intercept,	that	fits	the	data	that	I	have	best,	I	can	use	that	line	to	predict	new	values.

You	can	see	that	the	weights	that	I	observed	only	went	up	to	people	that	weighed	100	kilograms.	What	if	I
had	someone	who	weighed	120	kilograms?	Well,	I	could	use	that	line	to	then	figure	out	where	would	the
height	be	for	someone	with	120	kilograms	based	on	this	previous	data.

I	don't	know	why	they	call	it	regression.	Regression	kind	of	implies	that	you're	doing	something
backwards.	I	guess	you	can	think	of	it	in	terms	of	you're	creating	a	line	to	predict	new	values	based	on
observations	you	made	in	the	past,	backwards	in	time,	but	it	seems	like	a	little	bit	of	a	stretch.	It's	just	a
confusing	term	quite	honestly,	and	one	way	that	we	kind	of	obscure	what	we	do	with	very	simple	concepts
using	very	fancy	terminology.	All	it	is,	is	fitting	a	straight	line	to	a	set	of	data	points.





The	ordinary	least	squares	technique
How	does	linear	regression	work?	Well	internally,	it	uses	a	technique	called	ordinary	least	squares;	it's
also	known	as,	OLS.	You	might	see	that	term	tossed	around	as	well.	The	way	it	works	is	it	tries	to
minimize	the	squared	error	between	each	point	and	the	line,	where	the	error	is	just	the	distance	between
each	point	and	the	line	that	you	have.

So,	we	sum	up	all	the	squares	of	those	errors,	which	sounds	a	lot	like	when	we	computed	variance,	right,
except	that	instead	of	relative	to	the	mean,	it's	relative	to	the	line	that	we're	defining.	We	can	measure	the
variance	of	the	data	points	from	that	line,	and	by	minimizing	that	variance,	we	can	find	the	line	that	fits	it

the	best:	

Now	you'll	never	have	to	actually	do	this	yourself	the	hard	way,	but	if	you	did	have	to	for	some	reason,	or
if	you're	just	curious	about	what	happens	under	the	hood,	I'll	now	describe	the	overall	algorithm	for	you
and	how	you	would	actually	go	about	computing	the	slope	and	y-intercept	yourself	the	hard	way	if	you
need	to	one	day.	It's	really	not	that	complicated.

Remember	the	slope-intercept	equation	of	a	line?	It	is	y=mx+c.	The	slope	just	turns	out	to	be	the
correlation	between	the	two	variables	times	the	standard	deviation	in	Y	divided	by	the	standard	deviation
in	X.	It	might	seem	a	little	bit	weird	that	standard	deviation	just	kind	of	creeps	into	the	math	naturally
there,	but	remember	correlation	had	standard	deviation	baked	into	it	as	well,	so	it's	not	too	surprising	that
you	have	to	reintroduce	that	term.

The	intercept	can	then	be	computed	as	the	mean	of	the	Y	minus	the	slope	times	the	mean	of	X.	Again,	even
though	that's	really	not	that	difficult,	Python	will	do	it	all	for	you,	but	the	point	is	that	these	aren't
complicated	things	to	run.	They	can	actually	be	done	very	efficiently.

Remember	that	least	squares	minimize	the	sum	of	squared	errors	from	each	point	to	the	line.	Another	way
of	thinking	about	linear	regression	is	that	you're	defining	a	line	that	represents	the	maximum	likelihood	of
an	observation	line	there;	that	is,	the	maximum	probability	of	the	y	value	being	something	for	a	given	x
value.

People	sometimes	call	linear	regression	maximum	likelihood	estimation,	and	it's	just	another	example	of
people	giving	a	fancy	name	to	something	that's	very	simple,	so	if	you	hear	someone	talk	about	maximum
likelihood	estimation,	they're	really	talking	about	regression.	They're	just	trying	to	sound	really	smart.	But
now	you	know	that	term	too,	so	you	too	can	sound	smart.





The	gradient	descent	technique
There	is	more	than	one	way	to	do	linear	regression.	We've	talked	about	ordinary	least	squares	as	being	a
simple	way	of	fitting	a	line	to	a	set	of	data,	but	there	are	other	techniques	as	well,	gradient	descent	being
one	of	them,	and	it	works	best	in	three-dimensional	data.	So,	it	tries	to	follow	the	contours	of	the	data	for
you.	It's	very	fancy	and	obviously	a	little	bit	more	computationally	expensive,	but	Python	does	make	it
easy	for	you	to	try	it	out	if	you	want	to	compare	it	to	ordinary	least	squares.

Using	the	gradient	descent	technique	can	make	sense	when	dealing	with	3D	data.

Usually	though,	least	squares	is	a	perfectly	good	choice	for	doing	linear	regression,	and	it's	always	a
legitimate	thing	to	do,	but	if	you	do	run	into	gradient	descent,	you	will	know	that	that	is	just	an	alternate
way	of	doing	linear	regression,	and	it's	usually	seen	in	higher	dimensional	data.





The	co-efficient	of	determination	or	r-squared
So	how	do	I	know	how	good	my	regression	is?	How	well	does	my	line	fit	my	data?	That's	where	r-
squared	comes	in,	and	r-squared	is	also	known	as	the	coefficient	of	determination.	Again,	someone	trying
to	sound	smart	might	call	it	that,	but	usually	it's	called	r-squared.

It	is	the	fraction	of	the	total	variation	in	Y	that	is	captured	by	your	models.	So	how	well	does	your	line
follow	that	variation	that's	happening?	Are	we	getting	an	equal	amount	of	variance	on	either	side	of	your
line	or	not?	That's	what	r-squared	is	measuring.

	





Computing	r-squared
To	actually	compute	the	value,	take	1	minus	the	sum	of	the	squared	errors	over	the	sum	of	the	squared
variations	from	the	mean:

So,	it's	not	very	difficult	to	compute,	but	again,	Python	will	give	you	functions	that	will	just	compute	that
for	you,	so	you'll	never	have	to	actually	do	that	math	yourself.





Interpreting	r-squared
For	r-squared,	you	will	get	a	value	that	ranges	from	0	to	1.	Now	0	means	your	fit	is	terrible.	It	doesn't
capture	any	of	the	variance	in	your	data.	While	1	is	a	perfect	fit,	where	all	of	the	variance	in	your	data
gets	captured	by	this	line,	and	all	of	the	variance	you	see	on	either	side	of	your	line	should	be	the	same	in
that	case.	So	0	is	bad,	and	1	is	good.	That's	all	you	really	need	to	know.	Something	in	between	is
something	in	between.	A	low	r-squared	value	means	it's	a	poor	fit,	a	high	r-squared	value	means	it's	a
good	fit.

As	you'll	see	in	the	coming	sections,	there's	more	than	one	way	to	do	regression.	Linear	regression	is	one
of	them.	It's	a	very	simple	technique,	but	there	are	other	techniques	as	well,	and	you	can	use	r-squared	as
a	quantitative	measure	of	how	good	a	given	regression	is	to	a	set	of	data	points,	and	then	use	that	to
choose	the	model	that	best	fits	your	data.

	





Computing	linear	regression	and	r-squared	using
Python
Let's	now	play	with	linear	regression	and	actually	compute	some	linear	regression	and	r-squared.	We	can
start	by	creating	a	little	bit	of	Python	code	here	that	generates	some	random-ish	data	that	is	in	fact	linearly
correlated.

In	this	example	I'm	going	to	fake	some	data	about	page	rendering	speeds	and	how	much	people	purchase,
just	like	a	previous	example.	We're	going	to	fabricate	a	linear	relationship	between	the	amount	of	time	it
takes	for	a	website	to	load	and	the	amount	of	money	people	spend	on	that	website:

%matplotlib	inline

import	numpy	as	np

from	pylab	import	*

pageSpeeds	=	np.random.normal(3.0,	1.0,	1000)

purchaseAmount	=	100	-	(pageSpeeds	+	np.random.normal(0,	0.1,

1000))	*	3

scatter(pageSpeeds,	purchaseAmount)	

All	I've	done	here	is	I've	made	a	random,	a	normal	distribution	of	page	speeds	centered	around	3	seconds
with	a	standard	deviation	of	1	second.	I've	made	the	purchase	amount	a	linear	function	of	that.	So,	I'm
making	it	100	minus	the	page	speeds	plus	some	normal	random	distribution	around	it,	times	3.	And	if	we
scatter	that,	we	can	see	that	the	data	ends	up	looking	like	this:

You	can	see	just	by	eyeballing	it	that	there's	definitely	a	linear	relationship	going	on	there,	and	that's
because	we	did	hardcode	a	real	linear	relationship	in	our	source	data.

Now	let's	see	if	we	can	tease	that	out	and	find	the	best	fit	line	using	ordinary	least	squares.	We	talked
about	how	to	do	ordinary	least	squares	and	linear	regression,	but	you	don't	have	to	do	any	of	that	math
yourself	because	the	SciPy	package	has	a	stats	package	that	you	can	import:

from	scipy	import	stats

						

slope,	intercept,	r_value,	p_value,	std_err	=					

stats.linregress(pageSpeeds,	purchaseAmount)	

You	can	import	stats	from	scipy,	and	then	you	can	just	call	stats.linregress()	on	your	two	features.	So,	we



have	a	list	of	page	speeds	(pageSpeeds)	and	a	corresponding	list	of	purchase	amounts	(purchaseAmount).	The
linregress()	function	will	give	us	back	a	bunch	of	stuff,	including	the	slope,	the	intercept,	which	is	what	I
need	to	define	my	best	fit	line.	It	also	gives	us	the	r_value,	from	which	we	can	get	r-squared	to	measure	the
quality	of	that	fit,	and	a	couple	of	things	that	we'll	talk	about	later	on.	For	now,	we	just	need	slope,
intercept,	and	r_value,	so	let's	go	ahead	and	run	these.	We'll	begin	by	finding	the	linear	regression	best	fit:

r_value	**	2

This	is	what	your	output	should	look	like:

Now	the	r-squared	value	of	the	line	that	we	got	back	is	0.99,	that's	almost	1.0.	That	means	we	have	a
really	good	fit,	which	isn't	too	surprising	because	we	made	sure	there	was	a	real	linear	relationship
between	this	data.	Even	though	there	is	some	variance	around	that	line,	our	line	captures	that	variance.	We
have	roughly	the	same	amount	of	variance	on	either	side	of	the	line,	which	is	a	good	thing.	It	tells	us	that
we	do	have	a	linear	relationship	and	our	model	is	a	good	fit	for	the	data	that	we	have.

Let's	plot	that	line:

import	matplotlib.pyplot	as	plt

def	predict(x):

return	slope	*	x	+	intercept

fitLine	=	predict(pageSpeeds)

plt.scatter(pageSpeeds,	purchaseAmount)

plt.plot(pageSpeeds,	fitLine,	c='r')

plt.show()

The	following	is	the	output	to	the	preceding	code:

This	little	bit	of	code	will	create	a	function	to	draw	the	best	fit	line	alongside	the	data.	There's	a	little	bit
more	Matplotlib	magic	going	on	here.	We're	going	to	make	a	fitLine	list	and	we're	going	to	use	the	predict()
function	we	wrote	to	take	the	pageSpeeds,	which	is	our	x-axis,	and	create	the	Y	function	from	that.	So	instead
of	taking	the	observations	for	amount	spent,	we're	going	to	find	the	predicted	ones	just	using	the	slope
times	x	plus	the	intercept	that	we	got	back	from	the	linregress()	call	above.	Essentially	here,	we're	going	to
do	a	scatter	plot	like	we	did	before	to	show	the	raw	data	points,	which	are	the	observations.



Then	we're	also	going	to	call	plot	on	that	same	pyplot	instance	using	our	fitLine	that	we	created	using	the
line	equation	that	we	got	back,	and	show	them	all	both	together.	When	we	do	that,	it	looks	like	the
following	graph:

You	can	see	that	our	line	is	in	fact	a	great	fit	for	our	data!	It	goes	right	smack	down	the	middle,	and	all	you
need	to	predict	new	values	is	this	predict	function.	Given	a	new	previously	unseen	page	speed,	we	could
predict	the	amount	spent	just	using	the	slope	times	the	page	speed	plus	the	intercept.	That's	all	there	is	to
it,	and	I	think	it's	great!





Activity	for	linear	regression
Time	now	to	get	your	hands	dirty.	Try	increasing	the	random	variation	in	the	test	data	and	see	if	that	has
any	impact.	Remember,	the	r-squared	is	a	measure	of	the	fit,	of	how	much	do	we	capture	the	variance,	so
the	amount	of	variance,	well...	why	don't	you	see	if	it	actually	makes	a	difference	or	not.

That's	linear	regression,	a	pretty	simple	concept.	All	we're	doing	is	fitting	a	straight	line	to	set	of
observations,	and	then	we	can	use	that	line	to	make	predictions	of	new	values.	That's	all	there	is	to	it.	But
why	limit	yourself	to	a	line?	There's	other	types	of	regression	we	can	do	that	are	more	complex.	We'll
explore	these	next.

	





Polynomial	regression
We've	talked	about	linear	regression	where	we	fit	a	straight	line	to	a	set	of	observations.	Polynomial
regression	is	our	next	topic,	and	that's	using	higher	order	polynomials	to	fit	your	data.	So,	sometimes	your
data	might	not	really	be	appropriate	for	a	straight	line.	That's	where	polynomial	regression	comes	in.

Polynomial	regression	is	a	more	general	case	of	regression.	So	why	limit	yourself	to	a	straight	line?
Maybe	your	data	doesn't	actually	have	a	linear	relationship,	or	maybe	there's	some	sort	of	a	curve	to	it,
right?	That	happens	pretty	frequently.

Not	all	relationships	are	linear,	but	the	linear	regression	is	just	one	example	of	a	whole	class	of
regressions	that	we	can	do.	If	you	remember	the	linear	regression	line	that	we	ended	up	with	was	of	the
form	y	=	mx	+	b,	where	we	got	back	the	values	m	and	b	from	our	linear	regression	analysis	from	ordinary
least	squares,	or	whatever	method	you	choose.	Now	this	is	just	a	first	order	or	a	first-degree	polynomial.
The	order	or	the	degree	is	the	power	of	x	that	you	see.	So	that's	the	first-order	polynomial.

Now	if	we	wanted,	we	could	also	use	a	second-order	polynomial,	which	would	look	like	y	=	ax^2	+	bx
+	c.	If	we	were	doing	a	regression	using	a	second-order	polynomial,	we	would	get	back	values	for	a,	b,
and	c.	Or	we	could	do	a	third-order	polynomial	that	has	the	form	ax^3	+	bx^2	+	cx	+	d.	The	higher	the
orders	get,	the	more	complex	the	curves	you	can	represent.	So,	the	more	powers	of	x	you	have	blended
together,	the	more	complicated	shapes	and	relationships	you	can	get.

But	more	degrees	aren't	always	better.	Usually	there's	some	natural	relationship	in	your	data	that	isn't
really	all	that	complicated,	and	if	you	find	yourself	throwing	very	large	degrees	at	fitting	your	data,	you
might	be	overfitting!

Beware	of	overfitting!

Don't	use	more	degrees	than	you	need
Visualize	your	data	first	to	see	how	complex	of	a	curve	there	might	really	be
Visualize	the	fit	and	check	if	your	curve	going	out	of	its	way	to	accommodate
outliers
A	high	r-squared	simply	means	your	curve	fits	your	training	data	well;	it	may	or
may	not	be	good	predictor

If	you	have	data	that's	kind	of	all	over	the	place	and	has	a	lot	of	variance,	you	can	go	crazy	and	create	a
line	that	just	like	goes	up	and	down	to	try	to	fit	that	data	as	closely	as	it	can,	but	in	fact	that	doesn't
represent	the	intrinsic	relationship	of	that	data.	It	doesn't	do	a	good	job	of	predicting	new	values.

So	always	start	by	just	visualizing	your	data	and	think	about	how	complicated	does	the	curve	really	needs
to	be.	Now	you	can	use	r-squared	to	measure	how	good	your	fit	is,	but	remember,	that's	just	measuring
how	well	this	curve	fits	your	training	data—that	is,	the	data	that	you're	using	to	actually	make	your
predictions	based	off	of.	It	doesn't	measure	your	ability	to	predict	accurately	going	forward.

Later,	we'll	talk	about	some	techniques	for	preventing	overfitting	called	train/test,	but	for	now	you're	just



going	to	have	to	eyeball	it	to	make	sure	that	you're	not	overfitting	and	throwing	more	degrees	at	a	function
than	you	need	to.	This	will	make	more	sense	when	we	explore	an	example,	so	let's	do	that	next.





Implementing	polynomial	regression	using
NumPy
Fortunately,	NumPy	has	a	polyfit	function	that	makes	it	super	easy	to	play	with	this	and	experiment	with
different	results,	so	let's	go	take	a	look.	Time	for	fun	with	polynomial	regression.	I	really	do	think	it's	fun,
by	the	way.	It's	kind	of	cool	seeing	all	that	high	school	math	actually	coming	into	some	practical
application.	Go	ahead	and	open	the	PolynomialRegression.ipynb	and	let's	have	some	fun.

Let's	create	a	new	relationship	between	our	page	speeds,	and	our	purchase	amount	fake	data,	and	this	time
we're	going	to	create	a	more	complex	relationship	that's	not	linear.	We're	going	to	take	the	page	speed	and
make	it	some	function	of	the	division	of	page	speed	for	the	purchase	amount:

%matplotlib	inline

from	pylab	import	*

np.random.seed(2)

pageSpeeds	=	np.random.normal(3.0,	1.0,	1000)

purchaseAmount	=	np.random.normal(50.0,	10.0,	1000)	/	pageSpeeds

scatter(pageSpeeds,	purchaseAmount)

If	we	do	a	scatter	plot,	we	end	up	with	the	following:

By	the	way,	if	you're	wondering	what	the	np.random.seed	line	does,	it	creates	a	random	seed	value,	and	it
means	that	when	we	do	subsequent	random	operations	they	will	be	deterministic.	By	doing	this	we	can
make	sure	that,	every	time	we	run	this	bit	of	code,	we	end	up	with	the	same	exact	results.	That's	going	to
be	important	later	on	because	I'm	going	to	suggest	that	you	come	back	and	actually	try	different	fits	to	this
data	to	compare	the	fits	that	you	get.	So,	it's	important	that	you're	starting	with	the	same	initial	set	of
points.

You	can	see	that	that's	not	really	a	linear	relationship.	We	could	try	to	fit	a	line	to	it	and	it	would	be	okay
for	a	lot	of	the	data,	maybe	down	at	the	right	side	of	the	graph,	but	not	so	much	towards	the	left.	We	really
have	more	of	an	exponential	curve.

Now	it	just	happens	that	NumPy	has	a	polyfit()	function	that	allows	you	to	fit	any	degree	polynomial	you
want	to	this	data.	So,	for	example,	we	could	say	our	x-axis	is	an	array	of	the	page	speeds	(pageSpeeds)	that



we	have,	and	our	y-axis	is	an	array	of	the	purchase	amounts	(purchaseAmount)	that	we	have.	We	can	then	just
call	np.polyfit(x,	y,	4),	meaning	that	we	want	a	fourth	degree	polynomial	fit	to	this	data.

x	=	np.array(pageSpeeds)

y	=	np.array(purchaseAmount)

p4	=	np.poly1d(np.polyfit(x,	y,	4))

Let's	go	ahead	and	run	that.	It	runs	pretty	quickly,	and	we	can	then	plot	that.	So,	we're	going	to	create	a
little	graph	here	that	plots	our	scatter	plot	of	original	points	versus	our	predicted	points.

import	matplotlib.pyplot	as	plt

						

xp	=	np.linspace(0,	7,	100)

plt.scatter(x,	y)

plt.plot(xp,	p4(xp),	c='r')

plt.show()

The	output	looks	like	the	following	graph:

At	this	point,	it	looks	like	a	reasonably	good	fit.	What	you	want	to	ask	yourself	though	is,	"Am	I
overfitting?	Does	my	curve	look	like	it's	actually	going	out	of	its	way	to	accommodate	outliers?"	I	find
that	that's	not	really	happening.	I	don't	really	see	a	whole	lot	of	craziness	going	on.

If	I	had	a	really	high	order	polynomial,	it	might	swoop	up	at	the	top	to	catch	that	one	outlier	and	then
swoop	downwards	to	catch	the	outliers	there,	and	get	a	little	bit	more	stable	through	where	we	have	a	lot
of	density,	and	maybe	then	it	could	potentially	go	all	over	the	place	trying	to	fit	the	last	set	of	outliers	at
the	end.	If	you	see	that	sort	of	nonsense,	you	know	you	have	too	many	orders,	too	many	degrees	in	your
polynomial,	and	you	should	probably	bring	it	back	down	because,	although	it	fits	the	data	that	you
observed,	it's	not	going	to	be	useful	for	predicting	data	you	haven't	seen.

Imagine	I	have	some	curve	that	swoops	way	up	and	then	back	down	again	to	fit	outliers.	My	prediction	for
something	in	between	there	isn't	going	to	be	accurate.	The	curve	really	should	be	in	the	middle.	Later	in
this	book	we'll	talk	about	the	main	ways	of	detecting	such	overfitting,	but	for	now,	please	just	observe	it
and	know	we'll	go	deeper	later.





Computing	the	r-squared	error
Now	we	can	measure	the	r-squared	error.	By	taking	the	y	and	the	predicted	values	(p4(x))	in	the	r2_score()
function	that	we	have	in	sklearn.metrics,	we	can	compute	that.

from	sklearn.metrics	import	r2_score

r2	=	r2_score(y,	p4(x))

						

print	r2

The	output	is	as	follows:

Our	code	compares	a	set	of	observations	to	a	set	of	predictions	and	computes	r-squared	for	you,	and	with
just	one	line	of	code!	Our	r-squared	for	this	turns	out	to	be	0.829,	which	isn't	too	bad.	Remember,	zero	is
bad,	one	is	good.	0.82	is	to	pretty	close	to	one,	not	perfect,	and	intuitively,	that	makes	sense.	You	can	see
that	our	line	is	pretty	good	in	the	middle	section	of	the	data,	but	not	so	good	out	at	the	extreme	left	and	not
so	good	down	at	the	extreme	right.	So,	0.82	sounds	about	right.





Activity	for	polynomial	regression
I	recommend	that	you	get	down	and	dirty	with	this	stuff.	Try	different	orders	of	polynomials.	Go	back	up
to	where	we	ran	the	polyfit()	function	and	try	different	values	there	besides	4.	You	can	use	1,	and	that
would	go	back	to	a	linear	regression,	or	you	could	try	some	really	high	amount	like	8,	and	maybe	you'll
start	to	see	overfitting.	So	see	what	effect	that	has.	You're	going	to	want	to	change	that.	For	example,	let's
go	to	a	third-degree	polynomial.

x	=	np.array(pageSpeeds)

y	=	np.array(purchaseAmount)

						

p4	=	np.poly1d(np.polyfit(x,	y,	3))		

Just	keep	hitting	run	to	go	through	each	step	and	you	can	see	the	it's	effect	as...

Our	third-degree	polynomial	is	definitely	not	as	good	a	fit	as	the	fourth-degree	polynomial.	If	you	actually
measure	the	r-squared	error,	it	would	actually	turn	out	worse,	quantitatively;	but	if	I	go	too	high,	you	might
start	to	see	overfitting.	So	just	have	some	fun	with	that,	play	around	different	values,	and	get	a	sense	of
what	different	orders	of	polynomials	do	to	your	regression.	Go	get	your	hands	dirty	and	try	to	learn
something.

So	that's	polynomial	regression.	Again,	you	need	to	make	sure	that	you	don't	put	more	degrees	at	the
problem	than	you	need	to.	Use	just	the	right	amount	to	find	what	looks	like	an	intuitive	fit	to	your	data.
Too	many	can	lead	to	overfitting,	while	too	few	can	lead	to	a	poor	fit...	so	you	can	use	both	your	eyeballs
for	now,	and	the	r-squared	metric,	to	figure	out	what	the	right	number	of	degrees	are	for	your	data.	Let's
move	on.





Multivariate	regression	and	predicting	car	prices
What	happens	then,	if	we're	trying	to	predict	some	value	that	is	based	on	more	than	one	other	attribute?
Let's	say	that	the	height	of	people	not	only	depends	on	their	weight,	but	also	on	their	genetics	or	some
other	things	that	might	factor	into	it.	Well,	that's	where	multivariate	analysis	comes	in.	You	can	actually
build	regression	models	that	take	more	than	one	factor	into	account	at	once.	It's	actually	pretty	easy	to	do
with	Python.

Let's	talk	about	multivariate	regression,	which	is	a	little	bit	more	complicated.	The	idea	of	multivariate
regression	is	this:	what	if	there's	more	than	one	factor	that	influences	the	thing	you're	trying	to	predict?

In	our	previous	examples,	we	looked	at	linear	regression.	We	talked	about	predicting	people's	heights
based	on	their	weight,	for	example.	We	assumed	that	the	weight	was	the	only	thing	that	influenced	their
height,	but	maybe	there	are	other	factors	too.	We	also	looked	at	the	effect	of	page	speed	on	purchase
amounts.	Maybe	there's	more	that	influences	purchase	amounts	than	just	page	speed,	and	we	want	to	find
how	these	different	factors	all	combine	together	to	influence	that	value.	So	that's	where	multivariate
regression	comes	in.

The	example	we're	going	to	look	at	now	is	as	follows.	Let's	say	that	you're	trying	to	predict	the	price	that
a	car	will	sell	for.	It	might	be	based	on	many	different	features	of	that	car,	such	as	the	body	style,	the
brand,	the	mileage;	who	knows,	even	on	how	good	the	tires	are.	Some	of	those	features	are	going	to	be
more	important	than	others	toward	predicting	the	price	of	a	car,	but	you	want	to	take	into	account	all	of
them	at	once.

So	our	way	forwards	here	is	still	going	to	use	the	least-squares	approach	to	fit	a	model	to	your	set	of
observations.	The	difference	is	that	we're	going	to	have	a	bunch	of	coefficients	for	each	different	feature
that	you	have.

So,	for	example,	the	price	model	that	we	end	up	with	might	be	a	linear	relationship	of	alpha,	some
constant,	kind	of	like	your	y-intercept	was,	plus	some	coefficient	of	the	mileage,	plus	some	coefficient	of
the	age,	plus	some	coefficient	of	how	many	doors	it	has:

Once	you	end	up	with	those	coefficients,	from	least	squares	analysis,	we	can	use	that	information	to	figure
out,	well,	how	important	are	each	of	these	features	to	my	model.	So,	if	I	end	up	with	a	very	small
coefficient	for	something	like	the	number	of	doors,	that	implies	that	the	number	of	doors	isn't	that
important,	and	maybe	I	should	just	remove	it	from	my	model	entirely	to	keep	it	simpler.

This	is	something	that	I	really	should	say	more	often	in	this	book.	You	always	want	to	do	the	simplest
thing	that	works	in	data	science.	Don't	over	complicate	things,	because	it's	usually	the	simple	models	that
work	the	best.	If	you	can	find	just	the	right	amount	of	complexity,	but	no	more,	that's	usually	the	right
model	to	go	with.	Anyway,	those	coefficients	give	you	a	way	of	actually,	"Hey	some	of	these	things	are
more	important	than	others.	Maybe	I	can	discard	some	of	these	factors."

Now	we	can	still	measure	the	quality	of	a	fit	with	multivariate	regression	using	r-squared.	It	works	the



same	way,	although	one	thing	you	need	to	assume	when	you're	doing	multivariate	regression	is	that	the
factors	themselves	are	not	dependent	on	each	other...	and	that's	not	always	true.	So	sometimes	you	need	to
keep	that	little	caveat	in	the	back	of	your	head.	For	example,	in	this	model	we're	going	to	assume	that
mileage	and	age	of	the	car	are	not	related;	but	in	fact,	they're	probably	pretty	tightly	related!	This	is	a
limitation	of	this	technique,	and	it	might	not	be	capturing	an	effect	at	all.





Multivariate	regression	using	Python
Fortunately	there's	a	statsmodel	package	available	for	Python	that	makes	doing	multivariate	regression
pretty	easy.	Let's	just	dive	in	and	see	how	it	works.	Let's	do	some	multivariate	regression	using	Python.
We're	going	to	use	some	real	data	here	about	car	values	from	the	Kelley	Blue	Book.

import	pandas	as	pd

df	=	pd.read_excel('http://cdn.sundog-soft.com/Udemy/DataScience/cars.xls')

We're	going	to	introduce	a	new	package	here	called	pandas,	which	lets	us	deal	with	tabular	data	really
easily.	It	lets	us	read	in	tables	of	data	and	rearrange	them,	and	modify	them,	and	slice	them	and	dice	them
in	different	ways.	We're	going	to	be	using	that	a	lot	going	forward.

We're	going	to	import	pandas	as	pd,	and	pd	has	a	read_Excel()	function	that	we	can	use	to	go	ahead	and	read	a
Microsoft	Excel	spreadsheet	from	the	Web	through	HTTP.	So,	pretty	awesome	capabilities	of	pandas
there.

I've	gone	ahead	and	hosted	that	file	for	you	on	my	own	domain,	and	if	we	run	that,	it	will	load	it	into
what's	called	a	DataFrame	object	that	we're	referring	to	as	df.	Now	I	can	call	head()	on	this	DataFrame	to	just
show	the	first	few	lines	of	it:

df.head()

The	following	is	the	output	for	the	preceding	code:

The	actual	dataset	is	much	larger.	This	is	just	the	first	few	samples.	So,	this	is	real	data	of	mileage,	make,
model,	trim,	type,	doors,	cruise,	sound	and	leather.

OK,	now	we're	going	to	use	pandas	to	split	that	up	into	the	features	that	we	care	about.	We're	going	to
create	a	model	that	tries	to	predict	the	price	just	based	on	the	mileage,	the	model,	and	the	number	of
doors,	and	nothing	else.

import	statsmodels.api	as	sm

df['Model_ord']	=	pd.Categorical(df.Model).codes

X	=	df[['Mileage',	'Model_ord',	'Doors']]

y	=	df[['Price']]

X1	=	sm.add_constant(X)

est	=	sm.OLS(y,	X1).fit()

est.summary()	

Now	the	problem	that	I	run	into	is	that	the	model	is	a	text,	like	Century	for	Buick,	and	as	you	recall,



everything	needs	to	be	a	number	when	I'm	doing	this	sort	of	analysis.	In	the	code,	I	use	this	Categorical()
function	in	pandas	to	actually	convert	the	set	of	model	names	that	it	sees	in	the	DataFrame	into	a	set	of	numbers;
that	is,	a	set	of	codes.	I'm	going	to	say	my	input	for	this	model	on	the	x-axis	is	mileage	(Mileage),	model
converted	to	an	ordinal	value	(Model_ord),	and	the	number	of	doors	(Doors).	What	I'm	trying	to	predict	on	the
y-axis	is	the	price	(Price).

The	next	two	lines	of	the	code	just	create	a	model	that	I'm	calling	est	that	uses	ordinary	least	squares,
OLS,	and	fits	that	using	the	columns	that	I	give	it,	Mileage,	Model_ord,	and	Doors.	Then	I	can	use	the	summary
call	to	print	out	what	my	model	looks	like:

You	can	see	here	that	the	r-squared	is	pretty	low.	It's	not	that	good	of	a	model,	really,	but	we	can	get	some
insight	into	what	the	various	errors	are,	and	interestingly,	the	lowest	standard	error	is	associated	with	the
mileage.

Now	I	have	said	before	that	the	coefficient	is	a	way	of	determining	which	items	matter,	and	that's	only	true
though	if	your	input	data	is	normalized.	That	is,	if	everything's	on	the	same	scale	of	0	to	1.	If	it's	not,	then
these	coefficients	are	kind	of	compensating	for	the	scale	of	the	data	that	it's	seeing.	If	you're	not	dealing
with	normalized	data,	as	in	this	case,	it's	more	useful	to	look	at	the	standard	errors.	In	this	case,	we	can
see	that	the	mileage	is	actually	the	biggest	factor	of	this	particular	model.	Could	we	have	figured	that	out
earlier?	Well,	we	could	have	just	done	a	little	bit	of	slicing	and	dicing	to	figure	out	that	the	number	of
doors	doesn't	actually	influence	the	price	much	at	all.	Let's	run	the	following	little	line:

y.groupby(df.Doors).mean()



A	little	bit	of	pandas	syntax	there.	It's	pretty	cool	that	you	can	do	it	in	Python	in	one	line	of	code!	That	will
print	out	a	new	DataFrame	that	shows	the	mean	price	for	the	given	number	of	doors:

I	can	see	the	average	two-door	car	sells	for	actually	more	than	the	average	four-door	car.	If	anything
there's	a	negative	correlation	between	number	of	doors	and	price,	which	is	a	little	bit	surprising.	This	is	a
small	dataset,	though,	so	we	can't	read	a	whole	lot	of	meaning	into	it	of	course.





Activity	for	multivariate	regression
As	an	activity,	please	mess	around	with	the	fake	input	data	where	you	want.	You	can	download	the	data
and	mess	around	with	the	spreadsheet.	Read	it	from	your	local	hard	drive	instead	of	from	HTTP,	and	see
what	kind	of	differences	you	can	have.	Maybe	you	can	fabricate	a	dataset	that	has	a	different	behavior	and
has	a	better	model	that	fits	it.	Maybe	you	can	make	a	wiser	choice	of	features	to	base	your	model	off	of.
So,	feel	free	to	mess	around	with	that	and	let's	move	on.

There	you	have	it:	multivariate	analysis	and	an	example	of	it	running.	Just	as	important	as	the	concept	of
multivariate	analysis,	which	we	explored,	was	some	of	the	stuff	that	we	did	in	that	Python	notebook.	So,
you	might	want	to	go	back	there	and	study	exactly	what's	going	on.

We	introduced	pandas	and	the	way	to	work	with	pandas	and	DataFrame	objects.	pandas	a	very	powerful
tool.	We'll	use	it	more	in	future	sections,	but	make	sure	you're	starting	to	take	notice	of	these	things
because	these	are	going	to	be	important	techniques	in	your	Python	skills	for	managing	large	amounts	of
data	and	organizing	your	data.





Multi-level	models
It	makes	sense	now	to	talk	about	multi-level	models.	This	is	definitely	an	advanced	topic,	and	I'm	not
going	to	get	into	a	whole	lot	of	detail	here.	My	objective	right	now	is	to	introduce	the	concept	of	multi-
level	models	to	you,	and	let	you	understand	some	of	the	challenges	and	how	to	think	about	them	when
you're	putting	them	together.	That's	it.

The	concept	of	multi-level	models	is	that	some	effects	happen	at	various	levels	in	the	hierarchy.	For
example,	your	health.	Your	health	might	depend	on	how	healthy	your	individual	cells	are,	and	those	cells
might	be	a	function	of	how	healthy	the	organs	that	they're	inside	are,	and	the	health	of	your	organs	might
depend	on	the	health	of	you	as	a	whole.	Your	health	might	depend	in	part	on	your	family's	health	and	the
environment	your	family	gives	you.	And	your	family's	health	in	turn	might	depend	on	some	factors	of	the
city	that	you	live	in,	how	much	crime	is	there,	how	much	stress	is	there,	how	much	pollution	is	there.	And
even	beyond	that,	it	might	depend	on	factors	in	the	entire	world	that	we	live	in.	Maybe	just	the	state	of
medical	technology	in	the	world	is	a	factor,	right?

Another	example:	your	wealth.	How	much	money	do	you	make?	Well,	that's	a	factor	of	your	individual
hard	work,	but	it's	also	a	factor	of	the	work	that	your	parents	did,	how	much	money	were	they	able	to
invest	into	your	education	and	the	environment	that	you	grew	up	in,	and	in	turn,	how	about	your
grandparents?	What	sort	of	environment	were	they	able	to	create	and	what	sort	of	education	were	they
able	to	offer	for	your	parents,	which	in	turn	influenced	the	resources	they	have	available	for	your	own
education	and	upbringing.

These	are	all	examples	of	multi-level	models	where	there	is	a	hierarchy	of	effects	that	influence	each
other	at	larger	and	larger	scales.	Now	the	challenge	of	multi-level	models	is	to	try	to	figure	out,	"Well,
how	do	I	model	these	interdependencies?	How	do	I	model	all	these	different	effects	and	how	they	affect
each	other?"

The	challenge	here	is	to	identify	the	factors	in	each	level	that	actually	affect	the	thing	you're	trying	to
predict.	If	I'm	trying	to	predict	overall	SAT	scores,	for	example,	I	know	that	depends	in	part	on	the
individual	child	that's	taking	the	test,	but	what	is	it	about	the	child	that	matters?	Well,	it	might	be	the
genetics,	it	might	be	their	individual	health,	the	individual	brain	size	that	they	have.	You	can	think	of	any
number	of	factors	that	affect	the	individual	that	might	affect	their	SAT	score.	And	then	if	you	go	up	another
level,	look	at	their	home	environment,	look	at	their	family.	What	is	it	about	their	families	that	might	affect
their	SAT	scores?	How	much	education	were	they	able	to	offer?	Are	the	parents	able	to	actually	tutor	the
children	in	the	topics	that	are	on	the	SAT?	These	are	all	factors	at	that	second	level	that	might	be
important.	What	about	their	neighborhood?	The	crime	rate	of	the	neighborhood	might	be	important.	The
facilities	they	have	for	teenagers	and	keeping	them	off	the	streets,	things	like	that.

The	point	is	you	want	to	keep	looking	at	these	higher	levels,	but	at	each	level	identify	the	factors	that
impact	the	thing	you're	trying	to	predict.	I	can	keep	going	up	to	the	quality	of	the	teachers	in	their	school,
the	funding	of	the	school	district,	the	education	policies	at	the	state	level.	You	can	see	there	are	different
factors	at	different	levels	that	all	feed	into	this	thing	you're	trying	to	predict,	and	some	of	these	factors
might	exist	at	more	than	one	level.	Crime	rate,	for	example,	exists	at	the	local	and	state	levels.	You	need
to	figure	out	how	those	all	interplay	with	each	other	as	well	when	you're	doing	multi-level	modeling.



As	you	can	imagine,	this	gets	very	hard	and	very	complicated	very	quickly.	It	is	really	way	beyond	the
scope	of	this	book,	or	any	introductory	book	in	data	science.	This	is	hard	stuff.	There	are	entire	thick
books	about	it,	you	could	do	an	entire	book	about	it	that	would	be	a	very	advanced	topic.

So	why	am	I	even	mentioning	multi-level	models?	It	is	because	I've	seen	it	mentioned	on	job	descriptions,
in	a	couple	of	cases,	as	something	that	they	want	you	to	know	about	in	a	couple	of	cases.	I've	never	had	to
use	it	in	practice,	but	I	think	the	important	thing	from	the	standpoint	of	getting	a	career	in	data	science	is
that	you	at	least	are	familiar	with	the	concept,	and	you	know	what	it	means	and	some	of	the	challenges
involved	in	creating	a	multi-level	model.	I	hope	I've	given	you	those	concepts.	With	that,	we	can	move	on
to	the	next	section.

There	you	have	the	concepts	of	multi-level	models.	It's	a	very	advanced	topic,	but	you	need	to	understand
what	the	concept	is,	at	least,	and	the	concept	itself	is	pretty	simple.	You	just	are	looking	at	the	effects	at
different	levels,	different	hierarchies	when	you're	trying	to	make	a	prediction.	So	maybe	there	are
different	layers	of	effects	that	have	impacts	on	each	other,	and	those	different	layers	might	have	factors
that	interrelate	with	each	other	as	well.	Multi-level	modeling	tries	to	take	account	of	all	those	different
hierarchies	and	factors	and	how	they	interplay	with	each	other.	Rest	assured	that's	all	you	need	to	know
for	now.





Summary
In	this	chapter,	we	talked	about	regression	analysis,	which	is	trying	to	fit	a	curve	to	a	set	of	training	data
and	then	using	it	to	predict	new	values.	We	saw	its	different	forms.	We	looked	at	the	concept	of	linear
regression	and	its	implementation	in	Python.

We	learned	what	polynomial	regression	is,	that	is,	using	higher	degree	polynomials	to	create	better,
complex	curves	for	multi-dimensional	data.	We	also	saw	its	implementation	in	Python.

We	then	talked	about	multivariate	regression,	which	is	a	little	bit	more	complicated.	We	saw	how	it	is
used	when	there	are	multiple	factors	affecting	the	data	that	we're	predicting.	We	looked	at	an	interesting
example,	which	predicts	the	price	of	a	car	using	Python	and	a	very	powerful	tool,	pandas.

Finally,	we	looked	at	the	concept	of	multi-level	models.	We	understood	some	of	the	challenges	and	how
to	think	about	them	when	you're	putting	them	together.	In	the	next	chapter,	we'll	learn	some	machine
learning	techniques	using	Python.



	



Machine	Learning	with	Python
	

In	this	chapter,	we	get	into	machine	learning	and	how	to	actually	implement	machine	learning	models	in
Python.

We'll	examine	what	supervised	and	unsupervised	learning	means,	and	how	they're	different	from	each
other.	We'll	see	techniques	to	prevent	overfitting,	and	then	look	at	an	interesting	example	where	we
implement	a	spam	classifier.	We'll	analyze	what	K-Means	clustering	is	a	long	the	way,	with	a	working
example	that	clusters	people	based	on	their	income	and	age	using	scikit-learn!

We'll	also	cover	a	really	interesting	application	of	machine	learning	called	decision	trees	and	we'll	build
a	working	example	in	Python	that	predict	shiring	decisions	in	a	company.	Finally,	we'll	walk	through	the
fascinating	concepts	of	ensemble	learning	and	SVMs,	which	are	some	of	my	favourite	machine	learning
areas!

More	specifically,	we'll	cover	the	following	topics:

Supervised	and	unsupervised	learning
Avoiding	overfitting	by	using	train/test
Bayesian	methods
Implementation	of	an	e-mail	spam	classifier	with	NaÃ¯ve	Bayes
Concept	of	K-means	clustering
Example	of	clustering	in	Python
Entropy	and	how	to	measure	it
Concept	of	decision	trees	and	its	example	in	Python
What	is	ensemble	learning
Support	Vector	Machine	(SVM)	and	its	example	using	scikit-learn

	

	





Machine	learning	and	train/test
So	what	is	machine	learning?	Well,	if	you	look	it	up	on	Wikipedia	or	whatever,	it'll	say	that	it	is
algorithms	that	can	learn	from	observational	data	and	can	make	predictions	based	on	it.	It	sounds	really
fancy,	right?	Like	artificial	intelligence	stuff,	like	you	have	a	throbbing	brain	inside	of	your	computer.	But
in	reality,	these	techniques	are	usually	very	simple.

We've	already	looked	at	regressions,	where	we	took	a	set	of	observational	data,	we	fitted	a	line	to	it,	and
we	used	that	line	to	make	predictions.	So	by	our	new	definition,	that	was	machine	learning!	And	your
brain	works	that	way	too.

Another	fundamental	concept	in	machine	learning	is	something	called	train/test,	which	lets	us	very
cleverly	evaluate	how	good	a	machine	learning	model	we've	made.	As	we	look	now	at	unsupervised	and
supervised	learning,	you'll	see	why	train/test	is	so	important	to	machine	learning.





Unsupervised	learning
Let's	talk	in	detail	now	about	two	different	types	of	machine	learning:	supervised	and	unsupervised
learning.	Sometimes	there	can	be	kind	of	a	blurry	line	between	the	two,	but	the	basic	definition	of
unsupervised	learning	is	that	you're	not	giving	your	model	any	answers	to	learn	from.	You're	just
presenting	it	with	a	group	of	data	and	your	machine	learning	algorithm	tries	to	make	sense	out	of	it	given
no	additional	information:

Let's	say	I	give	it	a	bunch	of	different	objects,	like	these	balls	and	cubes	and	sets	of	dice	and	what	not.
Let's	then	say	have	some	algorithm	that	will	cluster	these	objects	into	things	that	are	similar	to	each	other
based	on	some	similarity	metric.

Now	I	haven't	told	the	machine	learning	algorithm,	ahead	of	time,	what	categories	certain	objects	belong
to.	I	don't	have	a	cheat	sheet	that	it	can	learn	from	where	I	have	a	set	of	existing	objects	and	my	correct
categorization	of	it.	The	machine	learning	algorithm	must	infer	those	categories	on	its	own.	This	is	an
example	of	unsupervised	learning,	where	I	don't	have	a	set	of	answers	that	I'm	getting	it	learn	from.	I'm
just	trying	to	let	the	algorithm	gather	its	own	answers	based	on	the	data	presented	to	it	alone.

The	problem	with	this	is	that	we	don't	necessarily	know	what	the	algorithm	will	come	up	with!	If	I	gave	it
that	bunch	of	objects	shown	in	the	preceding	image,	is	it	going	to	group	things	into	things	that	are	round,
things	that	are	large	versus	small,	things	that	are	red	versus	blue,	I	don't	know.	It's	going	to	depend	on	the
metric	that	I	give	it	for	similarity	between	items	primarily.	But	sometimes	you'll	find	clusters	that	are
surprising,	and	emerged	that	you	didn't	expect	to	see.

So	that's	really	the	point	of	unsupervised	learning:	if	you	don't	know	what	you're	looking	for,	it	can	be	a
powerful	tool	for	discovering	classifications	that	you	didn't	even	know	were	there.	We	call	this	a	latent
variable.	Some	property	of	your	data	that	you	didn't	even	know	was	there	originally,	can	be	teased	out	by
unsupervised	learning.

Let's	take	another	example	around	unsupervised	learning.	Say	I	was	clustering	people	instead	of	balls	and
dice.	I'm	writing	a	dating	site	and	I	want	to	see	what	sorts	of	people	tend	to	cluster	together.	There	are
some	attributes	that	people	tend	to	cluster	around,	which	decide	whether	they	tend	to	like	each	other	and
date	each	other	for	example.	Now	you	might	find	that	the	clusters	that	emerge	don't	conform	to	your
predisposed	stereotypes.	Maybe	it's	not	about	college	students	versus	middle-aged	people,	or	people	who
are	divorced	and	whatnot,	or	their	religious	beliefs.	Maybe	if	you	look	at	the	clusters	that	actually
emerged	from	that	analysis,	you'll	learn	something	new	about	your	users	and	actually	figure	out	that	there's
something	more	important	than	any	of	those	existing	features	of	your	people	that	really	count	toward,	to
decide	whether	they	like	each	other.	So	that's	an	example	of	supervised	learning	providing	useful	results.



Another	example	could	be	clustering	movies	based	on	their	properties.	If	you	were	to	run	clustering	on	a
set	of	movies	from	like	IMDb	or	something,	maybe	the	results	would	surprise	you.	Perhaps	it's	not	just
about	the	genre	of	the	movie.	Maybe	there	are	other	properties,	like	the	age	of	the	movie	or	the	running
length	or	what	country	it	was	released	in,	that	are	more	important.	You	just	never	know.	Or	we	could
analyze	the	text	of	product	descriptions	and	try	to	find	the	terms	that	carry	the	most	meaning	for	a	certain
category.	Again,	we	might	not	necessarily	know	ahead	of	time	what	terms,	or	what	words,	are	most
indicative	of	a	product	being	in	a	certain	category;	but	through	unsupervised	learning,	we	can	tease	out
that	latent	information.





Supervised	learning
Now	in	contrast,	supervised	learning	is	a	case	where	we	have	a	set	of	answers	that	the	model	can	learn
from.	We	give	it	a	set	of	training	data,	that	the	model	learns	from.	It	can	then	infer	relationships	between
the	features	and	the	categories	that	we	want,	and	apply	that	to	unseen	new	values	-	and	predict	information
about	them.

Going	back	to	our	earlier	example,	where	we	were	trying	to	predict	car	prices	based	on	the	attributes	of
those	cars.	That's	an	example	where	we	are	training	our	model	using	actual	answers.	So	I	have	a	set	of
known	cars	and	their	actual	prices	that	they	sold	for.	I	train	the	model	on	that	set	of	complete	answers,	and
then	I	can	create	a	model	that	I'm	able	to	use	to	predict	the	prices	of	new	cars	that	I	haven't	seen	before.
That's	an	example	of	supervised	learning,	where	you're	giving	it	a	set	of	answers	to	learn	from.	You've
already	assigned	categories	or	some	organizing	criteria	to	a	set	of	data,	and	your	algorithm	then	uses	that
criteria	to	build	a	model	from	which	it	can	predict	new	values.

	





Evaluating	supervised	learning
So	how	do	you	evaluate	supervised	learning?	Well,	the	beautiful	thing	about	supervised	learning	is	that
we	can	use	a	trick	called	train/test.	The	idea	here	is	to	split	our	observational	data	that	I	want	my	model
to	learn	from	into	two	groups,	a	training	set	and	a	testing	set.	So	when	I	train/build	my	model	based	on	the
data	that	I	have,	I	only	do	that	with	part	of	my	data	that	I'm	calling	my	training	set,	and	I	reserve	another
part	of	my	data	that	I'm	going	to	use	for	testing	purposes.

I	can	build	my	model	using	a	subset	of	my	data	for	training	data,	and	then	I'm	in	a	position	to	evaluate	the
model	that	comes	out	of	that,	and	see	if	it	can	successfully	predict	the	correct	answers	for	my	testing	data.

So	you	see	what	I	did	there?	I	have	a	set	of	data	where	I	already	have	the	answers	that	I	can	train	my
model	from,	but	I'm	going	to	withhold	a	portion	of	that	data	and	actually	use	that	to	test	my	model	that	was
generated	using	the	training	set!	That	it	gives	me	a	very	concrete	way	to	test	how	good	my	model	is	on
unseen	data	because	I	actually	have	a	bit	of	data	that	I	set	aside	that	I	can	test	it	with.

You	can	then	measure	quantitatively	how	well	it	did	using	r-squared	or	some	other	metric,	like	root-mean-
square	error,	for	example.	You	can	use	that	to	test	one	model	versus	another	and	see	what	the	best	model
is	for	a	given	problem.	You	can	tune	the	parameters	of	that	model	and	use	train/test	to	maximize	the
accuracy	of	that	model	on	your	testing	data.	So	this	is	a	great	way	to	prevent	overfitting.

There	are	some	caveats	to	supervised	learning.	need	to	make	sure	that	both	your	training	and	test	datasets
are	large	enough	to	actually	be	representative	of	your	data.	You	also	need	to	make	sure	that	you're
catching	all	the	different	categories	and	outliers	that	you	care	about,	in	both	training	and	testing,	to	get	a
good	measure	of	its	success,	and	to	build	a	good	model.

You	have	to	make	sure	that	you've	selected	from	those	datasets	randomly,	and	that	you're	not	just	carving
your	dataset	in	two	and	saying	everything	left	of	here	is	training	and	right	here	is	testing.	You	want	to
sample	that	randomly,	because	there	could	be	some	pattern	sequentially	in	your	data	that	you	don't	know
about.

Now,	if	your	model	is	overfitting,	and	just	going	out	of	its	way	to	accept	outliers	in	your	training	data,
then	that's	going	to	be	revealed	when	you	put	it	against	unset	scene	of	testing	data.	This	is	because	all	that
gyrations	for	outliers	won't	help	with	the	outliers	that	it	hasn't	seen	before.

Let's	be	clear	here	that	train/test	is	not	perfect,	and	it	is	possible	to	get	misleading	results	from	it.	Maybe
your	sample	sizes	are	too	small,	like	we	already	talked	about,	or	maybe	just	due	to	random	chance	your
training	data	and	your	test	data	look	remarkably	similar,	they	actually	do	have	a	similar	set	of	outliers	-
and	you	can	still	be	overfitting.	As	you	can	see	in	the	following	example,	it	really	can	happen:	







K-fold	cross	validation
Now	there	is	a	way	around	this	problem,	called	k-fold	cross-validation,	and	we'll	look	at	an	example	of
this	later	in	the	book,	but	the	basic	concept	is	you	train/test	many	times.	So	you	actually	split	your	data	not
into	just	one	training	set	and	one	test	set,	but	into	multiple	randomly	assigned	segments,	k	segments.	That's
where	the	k	comes	from.	And	you	reserve	one	of	those	segments	as	your	test	data,	and	then	you	start
training	your	model	on	the	remaining	segments	and	measure	their	performance	against	your	test	dataset.
Then	you	take	the	average	performance	from	each	of	those	training	sets'	models'	results	and	take	their	r-
squared	average	score.

So	this	way,	you're	actually	training	on	different	slices	of	your	data,	measuring	them	against	the	same	test
set,	and	if	you	have	a	model	that's	overfitting	to	a	particular	segment	of	your	training	data,	then	it	will	get
averaged	out	by	the	other	ones	that	are	contributing	to	k-fold	cross-validation.

Here	are	the	K-fold	cross	validation	steps:

1.	 Split	your	data	into	K	randomly-assigned	segments
2.	 Reserve	one	segment	as	your	test	data
3.	 Train	on	each	of	the	remaining	K-1	segments	and	measure	their	performance	against	the	test	set
4.	 Take	the	average	of	the	K-1	r-squared	scores

This	will	make	more	sense	later	in	the	book,	right	now	I	would	just	like	for	you	to	know	that	this	tool
exists	for	actually	making	train/test	even	more	robust	than	it	already	is.	So	let's	go	and	actually	play	with
some	data	and	actually	evaluate	it	using	train/test	next.





Using	train/test	to	prevent	overfitting	of	a
polynomial	regression
Let's	put	train/test	into	action.	So	you	might	remember	that	a	regression	can	be	thought	of	as	a	form	of
supervised	machine	learning.	Let's	just	take	a	polynomial	regression,	which	we	covered	earlier,	and	use
train/test	to	try	to	find	the	right	degree	polynomial	to	fit	a	given	set	of	data.

Just	like	in	our	previous	example,	we're	going	to	set	up	a	little	fake	dataset	of	randomly	generated	page
speeds	and	purchase	amounts,	and	I'm	going	to	create	a	quirky	little	relationship	between	them	that's
exponential	in	nature.

%matplotlib	inline	

import	numpy	as	np	

from	pylab	import	*	

	

np.random.seed(2)	

	

pageSpeeds	=	np.random.normal(3.0,	1.0,	100)	

purchaseAmount	=	np.random.normal(50.0,	30.0,	100)	/	pageSpeeds	

	

scatter(pageSpeeds,	purchaseAmount)	

Let's	go	ahead	and	generate	that	data.	We'll	use	a	normal	distribution	of	random	data	for	both	page	speeds
and	purchase	amount	using	the	relationship	as	shown	in	the	following	screenshot:

Next,	we'll	split	that	data.	We'll	take	80%	of	our	data,	and	we're	going	to	reserve	that	for	our	training
data.	So	only	80%	of	these	points	are	going	to	be	used	for	training	the	model,	and	then	we're	going	to
reserve	the	other	20%	for	testing	that	model	against	unseen	data.

We'll	use	Python's	syntax	here	for	splitting	the	list.	The	first	80	points	are	going	to	go	to	the	training	set,
and	the	last	20,	everything	after	80,	is	going	to	go	to	test	set.	You	may	remember	this	from	our	Python
basics	chapter	earlier	on,	where	we	covered	the	syntax	to	do	this,	and	we'll	do	the	same	thing	for
purchase	amounts	here:

trainX	=	pageSpeeds[:80]	

testX	=	pageSpeeds[80:]	



	

trainY	=	purchaseAmount[:80]	

testY	=	purchaseAmount[80:]	

Now	in	our	earlier	sections,	I've	said	that	you	shouldn't	just	slice	your	dataset	in	two	like	this,	but	that	you
should	randomly	sample	it	for	training	and	testing.	In	this	case	though,	it	works	out	because	my	original
data	was	randomly	generated	anyway,	so	there's	really	no	rhyme	or	reason	to	where	things	fell.	But	in
real-world	data	you'll	want	to	shuffle	that	data	before	you	split	it.

We'll	look	now	at	a	handy	method	that	you	can	use	for	that	purpose	of	shuffling	your	data.	Also,	if	you're
using	the	pandas	package,	there's	some	handy	functions	in	there	for	making	training	and	test	datasets
automatically	for	you.	But	we're	going	to	do	it	using	a	Python	list	here.	So	let's	visualize	our	training
dataset	that	we	ended	up	with.	We'll	do	a	scatter	plot	of	our	training	page	speeds	and	purchase	amounts.

scatter(trainX,	trainY)	

This	is	what	your	output	should	now	look	like:

Basically,	80	points	that	were	selected	at	random	from	the	original	complete	dataset	have	been	plotted.	It
has	basically	the	same	shape,	so	that's	a	good	thing.	It's	representative	of	our	data.	That's	important!

Now	let's	plot	the	remaining	20	points	that	we	reserved	as	test	data.

scatter(testX,	testY)	

Here,	we	see	our	remaining	20	for	testing	also	has	the	same	general	shape	as	our	original	data.	So	I	think



that's	a	representative	test	set	too.	It's	a	little	bit	smaller	than	you	would	like	to	see	in	the	real	world,	for
sure.	You	probably	get	a	little	bit	of	a	better	result	if	you	had	1,000	points	instead	of	100,	for	example,	to
choose	from	and	reserved	200	instead	of	20.

Now	we're	going	to	try	to	fit	an	8th	degree	polynomial	to	this	data,	and	we'll	just	pick	the	number	8	at
random	because	I	know	it's	a	really	high	order	and	is	probably	overfitting.

Let's	go	ahead	and	fit	our	8th	degree	polynomial	using	np.poly1d(np.polyfit(x,	y,	8)),	where	x	is	an	array	of
the	training	data	only,	and	y	is	an	array	of	the	training	data	only.	We	are	finding	our	model	using	only	those
80	points	that	we	reserved	for	training.	Now	we	have	this	p4	function	that	results	that	we	can	use	to
predict	new	values:

x	=	np.array(trainX)	

y	=	np.array(trainY)	

	

p4	=	np.poly1d(np.polyfit(x,	y,	8))	

Now	we'll	plot	the	polynomial	this	came	up	with	against	the	training	data.	We	can	scatter	our	original	data
for	the	training	data	set,	and	then	we	can	plot	our	predicted	values	against	them:

import	matplotlib.pyplot	as	plt	

	

xp	=	np.linspace(0,	7,	100)	

axes	=	plt.axes()	

axes.set_xlim([0,7])	

axes.set_ylim([0,	200])	

plt.scatter(x,	y)	

plt.plot(xp,	p4(xp),	c='r')	

plt.show()	

You	can	see	in	the	following	graph	that	it	looks	like	a	pretty	good	fit,	but	you	know	that	clearly	it's	doing
some	overfitting:

What's	this	craziness	out	at	the	right?	I'm	pretty	sure	our	real	data,	if	we	had	it	out	there,	wouldn't	be	crazy
high,	as	this	function	would	implicate.	So	this	is	a	great	example	of	overfitting	your	data.	It	fits	the	data
you	gave	it	very	well,	but	it	would	do	a	terrible	job	of	predicting	new	values	beyond	the	point	where	the
graph	is	going	crazy	high	on	the	right.	So	let's	try	to	tease	that	out.	Let's	give	it	our	test	dataset:

testx	=	np.array(testX)	

testy	=	np.array(testY)	

	

axes	=	plt.axes()	



axes.set_xlim([0,7])	

axes.set_ylim([0,	200])	

plt.scatter(testx,	testy)	

plt.plot(xp,	p4(xp),	c='r')	

plt.show()	

Indeed,	if	we	plot	our	test	data	against	that	same	function,	well,	it	doesn't	actually	look	that	bad.

We	got	lucky	and	none	of	our	test	is	actually	out	here	to	begin	with,	but	you	can	see	that	it's	a	reasonable
fit,	but	far	from	perfect.	And	in	fact,	if	you	actually	measure	the	r-squared	score,	it's	worse	than	you	might
think.	We	can	measure	that	using	the	r2_score()	function	from	sklearn.metrics.	We	just	give	it	our	original	data
and	our	predicted	values	and	it	just	goes	through	and	measures	all	the	variances	from	the	predictions	and
squares	them	all	up	for	you:

from	sklearn.metrics	import	r2_score		

r2	=	r2_score(testy,	p4(testx))		

print	r2	

We	end	up	with	an	r-squared	score	of	just	0.3.	So	that's	not	that	hot!	You	can	see	that	it	fits	the	training	data
a	lot	better:

from	sklearn.metrics	import	r2_score		

r2	=	r2_score(np.array(trainY),	p4(np.array(trainX)))	

print	r2	

The	r-squared	value	turns	out	to	be	0.6,	which	isn't	too	surprising,	because	we	trained	it	on	the	training
data.	The	test	data	is	sort	of	its	unknown,	its	test,	and	it	did	fail	the	test,	quite	frankly.	30%,	that's	an	F!

So	this	has	been	an	example	where	we've	used	train/test	to	evaluate	a	supervised	learning	algorithm,	and
like	I	said	before,	pandas	has	some	means	of	making	this	even	easier.	We'll	look	at	that	a	little	bit	later,
and	we'll	also	look	at	more	examples	of	train/test,	including	k-fold	cross	validation,	later	in	the	book	as
well.





Activity
You	can	probably	guess	what	your	homework	is.	So	we	know	that	an	8th	order	polynomial	isn't	very
useful.	Can	you	do	better?	So	I	want	you	to	go	back	through	our	example,	and	use	different	values	for	the
degree	polynomial	that	you're	going	to	use	to	fit.	Change	that	8	to	different	values	and	see	if	you	can	figure
out	what	degree	polynomial	actually	scores	best	using	train/test	as	a	metric.	Where	do	you	get	your	best	r-
squared	score	for	your	test	data?	What	degree	fits	here?	Go	play	with	that.	It	should	be	a	pretty	easy
exercise	and	a	very	enlightening	one	for	you	as	well.

So	that's	train/test	in	action,	a	very	important	technique	to	have	under	your	belt,	and	you're	going	to	use	it
over	and	over	again	to	make	sure	that	your	results	are	a	good	fit	for	the	model	that	you	have,	and	that	your
results	are	a	good	predictor	of	unseen	values.	It's	a	great	way	to	prevent	overfitting	when	you're	doing
your	modeling.

	





Bayesian	methods	-	Concepts
Did	you	ever	wonder	how	the	spam	classifier	in	your	e-mail	works?	How	does	it	know	that	an	e-mail
might	be	spam	or	not?	Well,	one	popular	technique	is	something	called	Naive	Bayes,	and	that's	an
example	of	a	Bayesian	method.	Let's	learn	more	about	how	that	works.	Let's	discuss	Bayesian	methods.

We	did	talk	about	Bayes'	theorem	earlier	in	this	book	in	the	context	of	talking	about	how	things	like	drug
tests	could	be	very	misleading	in	their	results.	But	you	can	actually	apply	the	same	Bayes'	theorem	to
larger	problems,	like	spam	classifiers.	So	let's	dive	into	how	that	might	work,	it's	called	a	Bayesian
method.

So	just	a	refresher	on	Bayes'	theorem	-remember,	the	probability	of	A	given	B	is	equal	to	the	overall
probability	of	A	times	the	probability	of	B	given	A	over	the	overall	probability	of	B:

How	can	we	use	that	in	machine	learning?	I	can	actually	build	a	spam	classifier	for	that:	an	algorithm	that
can	analyze	a	set	of	known	spam	e-mails	and	a	known	set	of	non-spam	e-mails,	and	train	a	model	to
actually	predict	whether	new	e-mails	are	spam	or	not.	This	is	a	real	technique	used	in	actual	spam
classifiers	in	the	real	world.

As	an	example,	let's	just	figure	out	the	probability	of	an	e-mail	being	spam	given	that	it	contains	the	word
"free".	If	people	are	promising	you	free	stuff,	it's	probably	spam!	So	let's	work	that	out.	The	probability	of
an	email	being	spam	given	that	you	have	the	word	"free"	in	that	e-mail	works	out	to	the	overall
probability	of	it	being	a	spam	message	times	the	probability	of	containing	the	word	"free"	given	that	it's
spam	over	the	probability	overall	of	being	free:

The	numerator	can	just	be	thought	of	as	the	probability	of	a	message	being	Spam	and	containing	the	word
Free.	But	that's	a	little	bit	different	than	what	we're	looking	for,	because	that's	the	odds	out	of	the	complete
dataset	and	not	just	the	odds	within	things	that	contain	the	word	Free.	The	denominator	is	just	the	overall
probability	of	containing	the	word	Free.	Sometimes	that	won't	be	immediately	accessible	to	you	from	the
data	that	you	have.	If	it's	not,	you	can	expand	that	out	to	the	following	expression	if	you	need	to	derive	it:

This	gives	you	the	percentage	of	e-mails	that	contain	the	word	"free"	that	are	spam,	which	would	be	a
useful	thing	to	know	when	you're	trying	to	figure	out	if	it's	spam	or	not.

What	about	all	the	other	words	in	the	English	language,	though?	So	our	spam	classifier	should	know	about
more	than	just	the	word	"free".	It	should	automatically	pick	up	every	word	in	the	message,	ideally,	and
figure	out	how	much	does	that	contribute	to	the	likelihood	of	a	particular	e-mail	being	spam.	So	what	we
can	do	is	train	our	model	on	every	word	that	we	encounter	during	training,	throwing	out	things	like	"a"
and	"the"	and	"and"	and	meaningless	words	like	that.	Then	when	we	go	through	all	the	words	in	a	new	e-



mail,	we	can	multiply	the	probability	of	being	spam	for	each	word	together,	and	we	get	the	overall
probability	of	that	e-mail	being	spam.

Now	it's	called	Naive	Bayes	for	a	reason.	It's	naive	is	because	we're	assuming	that	there's	no
relationships	between	the	words	themselves.	We're	just	looking	at	each	word	in	isolation,	individually
within	a	message,	and	basically	combining	all	the	probabilities	of	each	word's	contribution	to	it	being
spam	or	not.	We're	not	looking	at	the	relationships	between	the	words.	So	a	better	spam	classifier	would
do	that,	but	obviously	that's	a	lot	harder.

So	this	sounds	like	a	lot	of	work.	But	the	overall	idea	is	not	that	hard,	and	scikit-learn	in	Python	makes	it
actually	pretty	easy	to	do.	It	offers	a	feature	called	CountVectorizer	that	makes	it	very	simple	to	actually
split	up	an	e-mail	to	all	of	its	component	words	and	process	those	words	individually.	Then	it	has	a
MultinomialNB	function,	where	NB	stands	for	Naive	Bayes,	which	will	do	all	the	heavy	lifting	for	Naive
Bayes	for	us.





Implementing	a	spam	classifier	with	Naïve	Bayes
Let's	write	a	spam	classifier	using	Naive	Bayes.	You're	going	to	be	surprised	how	easy	this	is.	In	fact,
most	of	the	work	ends	up	just	being	reading	all	the	input	data	that	we're	going	to	train	on	and	actually
parsing	that	data	in.	The	actual	spam	classification	bit,	the	machine	learning	bit,	is	itself	just	a	few	lines
of	code.	So	that's	usually	how	it	works	out:	reading	in	and	massaging	and	cleaning	up	your	data	is	usually
most	of	the	work	when	you're	doing	data	science,	so	get	used	to	the	idea!

import	os	

import	io	

import	numpy	

from	pandas	import	DataFrame	

from	sklearn.feature_extraction.text	import	CountVectorizer	

from	sklearn.naive_bayes	import	MultinomialNB	

	

def	readFiles(path):	

				for	root,	dirnames,	filenames	in	os.walk(path):	

								for	filename	in	filenames:	

												path	=	os.path.join(root,	filename)	

	

												inBody	=	False	

												lines	=	[]	

												f	=	io.open(path,	'r',	encoding='latin1')	

												for	line	in	f:	

																if	inBody:	

																				lines.append(line)	

																elif	line	==	'\n':	

																				inBody	=	True	

												f.close()	

												message	=	'\n'.join(lines)	

												yield	path,	message	

	

	

def	dataFrameFromDirectory(path,	classification):	

				rows	=	[]	

				index	=	[]	

				for	filename,	message	in	readFiles(path):	

								rows.append({'message':	message,	'class':	classification})	

								index.append(filename)	

	

				return	DataFrame(rows,	index=index)	

	

data	=	DataFrame({'message':	[],	'class':	[]})	

	

data	=	data.append(dataFrameFromDirectory(

																			'e:/sundog-consult/Udemy/DataScience/emails/spam',

																			'spam'))	

data	=	data.append(dataFrameFromDirectory(

																			'e:/sundog-consult/Udemy/DataScience/emails/ham',

																			'ham'))	

So	the	first	thing	we	need	to	do	is	read	all	those	e-mails	in	somehow,	and	we're	going	to	again	use	pandas
to	make	this	a	little	bit	easier.	Again,	pandas	is	a	useful	tool	for	handling	tabular	data.	We	import	all	the
different	packages	that	we're	going	to	use	within	our	example	here,	that	includes	the	os	library,	the	io
library,	numpy,	pandas,	and	CountVectorizer	and	MultinomialNB	from	scikit-learn.

Let's	go	through	this	code	in	detail	now.	We	can	skip	past	the	function	definitions	of	readFiles()	and
dataFrameFromDirectory()for	now	and	go	down	to	the	first	thing	that	our	code	actually	does	which	is	to	create
a	pandas	DataFrame	object.

We're	going	to	construct	this	from	a	dictionary	that	initially	contains	a	little	empty	list	for	messages	in	an
empty	list	of	class.	So	this	syntax	is	saying,	"I	want	a	DataFrame	that	has	two	columns:	one	that	contains



the	message,	the	actual	text	of	each	e-mail;	and	one	that	contains	the	class	of	each	e-mail,	that	is,	whether
it's	spam	or	ham".	So	it's	saying	I	want	to	create	a	little	database	of	e-mails,	and	this	database	has	two
columns:	the	actual	text	of	the	e-mail	and	whether	it's	spam	or	not.

Now	we	needed	to	put	something	in	that	database,	that	is,	into	that	DataFrame,	in	Python	syntax.	So	we
call	the	two	methods	append()	and	dataFrameFromDirectory()	to	actually	throw	into	the	DataFrame	all	the	spam
e-mails	from	my	spam	folder,	and	all	the	ham	e-mails	from	the	ham	folder.

If	you	are	playing	along	here,	make	sure	you	modify	the	path	passed	to	the	dataFrameFromDirectory()	function
to	match	wherever	you	installed	the	book	materials	in	your	system!	And	again,	if	you're	on	Mac	or	Linux,
please	pay	attention	to	backslashes	and	forward	slashes	and	all	that	stuff.	In	this	case,	it	doesn't	matter,	but
you	won't	have	a	drive	letter,	if	you're	not	on	Windows.	So	just	make	sure	those	paths	are	actually
pointing	to	where	your	spam	and	ham	folders	are	for	this	example.

Next,	dataFrameFromDirectory()	is	a	function	I	wrote,	which	basically	says	I	have	a	path	to	a	directory,	and	I
know	it's	given	classification,	spam	or	ham,	then	it	uses	the	readFiles()	function,	that	I	also	wrote,	which
will	iterate	through	every	single	file	in	a	directory.	So	readFiles()	is	using	the	os.walk()	function	to	find	all
the	files	in	a	directory.	Then	it	builds	up	the	full	pathname	for	each	individual	file	in	that	directory,	and
then	it	reads	it	in.	And	while	it's	reading	it	in,	it	actually	skips	the	header	for	each	e-mail	and	just	goes
straight	to	the	text,	and	it	does	that	by	looking	for	the	first	blank	line.

It	knows	that	everything	after	the	first	empty	line	is	actually	the	message	body,	and	everything	in	front	of
that	first	empty	line	is	just	a	bunch	of	header	information	that	I	don't	actually	want	to	train	my	spam
classifier	on.	So	it	gives	me	back	both,	the	full	path	to	each	file	and	the	body	of	the	message.	So	that's
how	we	read	in	all	of	the	data,	and	that's	the	majority	of	the	code!

So	what	I	have	at	the	end	of	the	day	is	a	DataFrame	object,	basically	a	database	with	two	columns,	that
contains	message	bodies,	and	whether	it's	spam	or	not.	We	can	go	ahead	and	run	that,	and	we	can	use	the
head	command	from	the	DataFrame	to	actually	preview	what	this	looks	like:

data.head()	

The	first	few	entries	in	our	DataFrame	look	like	this:	for	each	path	to	a	given	file	full	of	e-mails	we	have
a	classification	and	we	have	the	message	body:

Alright,	now	for	the	fun	part,	we're	going	to	use	the	MultinomialNB()	function	from	scikit-learn	to	actually
perform	Naive	Bayes	on	the	data	that	we	have.

vectorizer	=	CountVectorizer()	

counts	=	vectorizer.fit_transform(data['message'].values)	



	

classifier	=	MultinomialNB()	

targets	=	data['class'].values	

classifier.fit(counts,	targets)	

This	is	what	your	output	should	now	look	like:

Once	we	build	a	MultinomialNB	classifier,	it	needs	two	inputs.	It	needs	the	actual	data	that	we're	training	on
(counts),	and	the	targets	for	each	thing	(targets).	So	counts	is	basically	a	list	of	all	the	words	in	each	e-mail
and	the	number	of	times	that	word	occurs.

So	this	is	what	CountVectorizer()	does:	it	takes	the	message	column	from	the	DataFrame	and	takes	all	the
values	from	it.	I'm	going	to	call	vectorizer.fit_transform	which	basically	tokenizes	or	converts	all	the
individual	words	seen	in	my	data	into	numbers,	into	values.	It	then	counts	up	how	many	times	each	word
occurs.

This	is	a	more	compact	way	of	representing	how	many	times	each	word	occurs	in	an	e-mail.	Instead	of
actually	preserving	the	words	themselves,	I'm	representing	those	words	as	different	values	in	a	sparse
matrix,	which	is	basically	saying	that	I'm	treating	each	word	as	a	number,	as	a	numerical	index,	into	an
array.	What	that	does	is,	just	in	plain	English,	it	split	each	message	up	into	a	list	of	words	that	are	in	it,
and	counts	how	many	times	each	word	occurs.	So	we're	calling	that	counts.	It's	basically	that	information
of	how	many	times	each	word	occurs	in	each	individual	message.	Mean	while	targets	is	the	actual
classification	data	for	each	e-mail	that	I've	encountered.	So	I	can	call	classifier.fit()	using	my
MultinomialNB()	function	to	actually	create	a	model	using	Naive	Bayes,	which	will	predict	whether	new	e-
mails	are	spam	or	not	based	on	the	information	we've	given	it.

Let's	go	ahead	and	run	that.	It	runs	pretty	quickly!	I'm	going	to	use	a	couple	of	examples	here.	Let's	try	a
message	body	that	just	says	Free	Money	now!!!	which	is	pretty	clearly	spam,	and	a	more	innocent	message
that	just	says	"Hi	Bob,	how	about	a	game	of	golf	tomorrow?"	So	we're	going	to	pass	these	in.

examples	=	['Free	Money	now!!!',	"Hi	Bob,	how	about	a	game	of	golf	tomorrow?"]	

example_counts	=	vectorizer.transform(examples)	

predictions	=	classifier.predict(example_counts)	

predictions	

The	first	thing	we	do	is	convert	the	messages	into	the	same	format	that	I	trained	my	model	on.	So	I	use	that
same	vectorizer	that	I	created	when	creating	the	model	to	convert	each	message	into	a	list	of	words	and
their	frequencies,	where	the	words	are	represented	by	positions	in	an	array.	Then	once	I've	done	that
transformation,	I	can	actually	use	the	predict()	function	on	my	classifier,	on	that	array	of	examples	that
have	transformed	into	lists	of	words,	and	see	what	we	come	up	with:

array(['spam',	'ham'],	dtype='|S4')	

And	sure	enough,	it	works!	So,	given	this	array	of	two	input	messages,	Free	Money	now!!!	and	Hi	Bob,	it's
telling	me	that	the	first	result	came	back	as	spam	and	the	second	result	came	back	as	ham,	which	is	what	I
would	expect.	That's	pretty	cool.	So	there	you	have	it.





Activity
We	had	a	pretty	small	dataset	here,	so	you	could	try	running	some	different	e-mails	through	it	if	you	want
and	see	if	you	get	different	results.	If	you	really	want	to	challenge	yourself,	try	applying	train/test	to	this
example.	So	the	real	measure	of	whether	or	not	my	spam	classifier	is	good	or	not	is	not	just	intuitively
whether	it	can	figure	out	that	Free	Money	now!!!	is	spam.	You	want	to	measure	that	quantitatively.

So	if	you	want	a	little	bit	of	a	challenge,	go	ahead	and	try	to	split	this	data	up	into	a	training	set	and	a	test
dataset.	You	can	actually	look	up	online	how	pandas	can	split	data	up	into	train	sets	and	testing	sets	pretty
easily	for	you,	or	you	can	do	it	by	hand.	Whatever	works	for	you.	See	if	you	can	actually	apply	your
MultinomialNB	classifier	to	a	test	dataset	and	measure	its	performance.	So,	if	you	want	a	little	bit	of	an
exercise,	a	little	bit	of	a	challenge,	go	ahead	and	give	that	a	try.

How	cool	is	that?	We	just	wrote	our	own	spam	classifier	just	using	a	few	lines	of	code	in	Python.	It's
pretty	easy	using	scikit-learn	and	Python.	That's	Naive	Bayes	in	action,	and	you	can	actually	go	and
classify	some	spam	or	ham	messages	now	that	you	have	that	under	your	belt.	Pretty	cool	stuff.	Let's	talk
about	clustering	next.





K-Means	clustering
Next,	we're	going	to	talk	about	k-means	clustering,	and	this	is	an	unsupervised	learning	technique	where
you	have	a	collection	of	stuff	that	you	want	to	group	together	into	various	clusters.	Maybe	it's	movie
genres	or	demographics	of	people,	who	knows?	But	it's	actually	a	pretty	simple	idea,	so	let's	see	how	it
works.

K-means	clustering	is	a	very	common	technique	in	machine	learning	where	you	just	try	to	take	a	bunch	of
data	and	find	interesting	clusters	of	things	just	based	on	the	attributes	of	the	data	itself.	Sounds	fancy,	but
it's	actually	pretty	simple.	All	we	do	in	k-means	clustering	is	try	to	split	our	data	into	K	groups	-	that's
where	the	K	comes	from,	it's	how	many	different	groups	you're	trying	to	split	your	data	into	-	and	it	does
this	by	finding	K	centroids.

So,	basically,	what	group	a	given	data	point	belongs	to	is	defined	by	which	of	these	centroid	points	it's
closest	to	in	your	scatter	plot.	You	can	visualize	this	in	the	following	image:

This	is	showing	an	example	of	k-means	clustering	with	K	of	three,	and	the	squares	represent	data	points	in
a	scatter	plot.	The	circles	represent	the	centroids	that	the	k-means	clustering	algorithm	came	up	with,	and
each	point	is	assigned	a	cluster	based	on	which	centroid	it's	closest	to.	So	that's	all	there	is	to	it,	really.
It's	an	example	of	unsupervised	learning.	It	isn't	a	case	where	we	have	a	bunch	of	data	and	we	already
know	the	correct	cluster	for	a	given	set	of	training	data;	rather,	you're	just	given	the	data	itself	and	it	tries
to	converge	on	these	clusters	naturally	just	based	on	the	attributes	of	the	data	alone.	It's	also	an	example
where	you	are	trying	to	find	clusters	or	categorizations	that	you	didn't	even	know	were	there.	As	with
most	unsupervised	learning	techniques,	the	point	is	to	find	latent	values,	things	you	didn't	really	realize
were	there	until	the	algorithm	showed	them	to	you.

For	example,	where	do	millionaires	live?	I	don't	know,	maybe	there	is	some	interesting	geographical
cluster	where	rich	people	tend	to	live,	and	k-means	clustering	could	help	you	figure	that	out.	Maybe	I
don't	really	know	if	today's	genres	of	music	are	meaningful.	What	does	it	mean	to	be	alternative	these
days?	Not	much,	right?	But	by	using	k-means	clustering	on	attributes	of	songs,	maybe	I	could	find
interesting	clusters	of	songs	that	are	related	to	each	other	and	come	up	with	new	names	for	what	those
clusters	represent.	Or	maybe	I	can	look	at	demographic	data,	and	maybe	existing	stereotypes	are	no	longer
useful.	Maybe	Hispanic	has	lost	its	meaning	and	there's	actually	other	attributes	that	define	groups	of
people,	for	example,	that	I	could	uncover	with	clustering.	Sounds	fancy,	doesn't	it?	Really	complicated
stuff.	Unsupervised	machine	learning	with	K	clusters,	it	sounds	fancy,	but	as	with	most	techniques	in	data



science,	it's	actually	a	very	simple	idea.

Here's	the	algorithm	for	us	in	plain	English:

1.	 Randomly	pick	K	centroids	(k-means):	We	start	off	with	a	randomly	chosen	set	of	centroids.	So	if
we	have	a	K	of	three	we're	going	to	look	for	three	clusters	in	our	group,	and	we	will	assign	three
randomly	positioned	centroids	in	our	scatter	plot.

2.	 Assign	each	data	point	to	the	centroid	it	is	closest	to:	We	then	assign	each	data	point	to	the
randomly	assigned	centroid	that	it	is	closest	to.

3.	 Recompute	the	centroids	based	on	the	average	position	of	each	centroid's	points:	Then
recompute	the	centroid	for	each	cluster	that	we	come	up	with.	That	is,	for	a	given	cluster	that	we	end
up	with,	we	will	move	that	centroid	to	be	the	actual	center	of	all	those	points.

4.	 Iterate	until	points	stop	changing	assignment	to	centroids:	We	will	do	it	all	again	until	those
centroids	stop	moving,	we	hit	some	threshold	value	that	says	OK,	we	have	converged	on	something
here.

5.	 Predict	the	cluster	for	new	points:	To	predict	the	clusters	for	new	points	that	I	haven't	seen	before,
we	can	just	go	through	our	centroid	locations	and	figure	out	which	centroid	it's	closest	to	to	predict
its	cluster.

Let's	look	at	a	graphical	example	to	make	a	little	bit	more	sense.	We'll	call	the	first	figure	in	the	following
image	as	A,	second	as	B,	third	as	C	and	the	fourth	as	D.

The	gray	squares	in	image	A	represent	data	points	in	our	scatter	plot.	The	axes	represent	some	different
features	of	something.	Maybe	it's	age	and	income;	it's	an	example	I	keep	using,	but	it	could	be	anything.
And	the	gray	squares	might	represent	individual	people	or	individual	songs	or	individual	something	that	I
want	to	find	relationships	between.

So	I	start	off	by	just	picking	three	points	at	random	on	my	scatterplot.	Could	be	anywhere.	Got	to	start
somewhere,	right?	The	three	points	(centroids)	I	selected	have	been	shown	as	circles	in	image	A.	So	the
next	thing	I'm	going	to	do	is	for	each	centroid	I'll	compute	which	one	of	the	gray	points	it's	closest	to.	By
doing	that,	the	points	shaded	in	blue	are	associated	with	this	blue	centroid.	The	green	points	are	closest	to
the	green	centroid,	and	this	single	red	point	is	closest	to	that	red	random	point	that	I	picked	out.

Of	course,	you	can	see	that's	not	really	reflective	of	where	the	actual	clusters	appear	to	be.	So	what	I'm
going	to	do	is	take	the	points	that	ended	up	in	each	cluster	and	compute	the	actual	center	of	those	points.
For	example,	in	the	green	cluster,	the	actual	center	of	all	data	turns	out	to	be	a	little	bit	lower.	We're	going
to	move	the	centroid	down	a	little	bit.	The	red	cluster	only	had	one	point,	so	its	center	moves	down	to



where	that	single	point	is.	And	the	blue	point	was	actually	pretty	close	to	the	center,	so	that	just	moves	a
little	bit.	On	this	next	iteration	we	end	up	with	something	that	looks	like	image	D.	Now	you	can	see	that
our	cluster	for	red	things	has	grown	a	little	bit	and	things	have	moved	a	little	bit,	that	is,	those	got	taken
from	the	green	cluster.

If	we	do	that	again,	you	can	probably	predict	what's	going	to	happen	next.	The	green	centroid	will	move	a
little	bit,	the	blue	centroid	will	still	be	about	where	it	is.	But	at	the	end	of	the	day	you're	going	to	end	up
with	the	clusters	you'd	probably	expect	to	see.	That's	how	k-means	works.	So	it	just	keeps	iterating,	trying
to	find	the	right	centroids	until	things	start	moving	around	and	we	converge	on	a	solution.





Limitations	to	k-means	clustering
So	there	are	some	limitations	to	k-means	clustering.	Here	they	are:

1.	 Choosing	K:	First	of	all,	we	need	to	choose	the	right	value	of	K,	and	that's	not	a	straightforward
thing	to	do	at	all.	The	principal	way	of	choosing	K	is	to	just	start	low	and	keep	increasing	the	value
of	K	depending	on	how	many	groups	you	want,	until	you	stop	getting	large	reductions	in	squared
error.	If	you	look	at	the	distances	from	each	point	to	their	centroids,	you	can	think	of	that	as	an	error
metric.	At	the	point	where	you	stop	reducing	that	error	metric,	you	know	you	probably	have	too	many
clusters.	So	you're	not	really	gaining	any	more	information	by	adding	additional	clusters	at	that	point.

2.	 Avoiding	local	minima:	Also,	there	is	a	problem	of	local	minima.	You	could	just	get	very	unlucky
with	those	initial	choices	of	centroids	and	they	might	end	up	just	converging	on	local	phenomena
instead	of	more	global	clusters,	so	usually,	you	want	to	run	this	a	few	times	and	maybe	average	the
results	together.	We	call	that	ensemble	learning.	We'll	talk	about	that	more	a	little	bit	later	on,	but	it's
always	a	good	idea	to	run	k-means	more	than	once	using	a	different	set	of	random	initial	values	and
just	see	if	you	do	in	fact	end	up	with	the	same	overall	results	or	not.

3.	 Labeling	the	clusters:	Finally,	the	main	problem	with	k-means	clustering	is	that	there's	no	labels	for
the	clusters	that	you	get.	It	will	just	tell	you	that	this	group	of	data	points	are	somehow	related,	but
you	can't	put	a	name	on	it.	It	can't	tell	you	the	actual	meaning	of	that	cluster.	Let's	say	I	have	a	bunch
of	movies	that	I'm	looking	at,	and	k-means	clustering	tells	me	that	bunch	of	science	fiction	movies
are	over	here,	but	it's	not	going	to	call	them	"science	fiction"	movies	for	me.	It's	up	to	me	to	actually
dig	into	the	data	and	figure	out,	well,	what	do	these	things	really	have	in	common?	How	might	I
describe	that	in	English?	That's	the	hard	part,	and	k-means	won't	help	you	with	that.	So	again,	scikit-
learn	makes	it	very	easy	to	do	this.

Let's	now	work	up	an	example	and	put	k-means	clustering	into	action.

	





Clustering	people	based	on	income	and	age
Let's	see	just	how	easy	it	is	to	do	k-means	clustering	using	scikit-learn	and	Python.

The	first	thing	we're	going	to	do	is	create	some	random	data	that	we	want	to	try	to	cluster.	Just	to	make	it
easier,	we'll	actually	build	some	clusters	into	our	fake	test	data.	So	let's	pretend	there's	some	real
fundamental	relationship	between	these	data,	and	there	are	some	real	natural	clusters	that	exist	in	it.

So	to	do	that,	we	can	work	with	this	little	createClusteredData()	function	in	Python:

from	numpy	import	random,	array	

	

#Create	fake	income/age	clusters	for	N	people	in	k	clusters	

def	createClusteredData(N,	k):	

				random.seed(10)	

				pointsPerCluster	=	float(N)/k	

				X	=	[]	

				for	i	in	range	(k):	

								incomeCentroid	=	random.uniform(20000.0,	200000.0)	

								ageCentroid	=	random.uniform(20.0,	70.0)	

								for	j	in	range(int(pointsPerCluster)):	

												X.append([random.normal(incomeCentroid,	10000.0),	

												random.normal(ageCentroid,	2.0)])	

				X	=	array(X)	

				return	X	

The	function	starts	off	with	a	consistent	random	seed	so	you'll	get	the	same	result	every	time.	We	want	to
create	clusters	of	N	people	in	k	clusters.	So	we	pass	N	and	k	to	createClusteredData().

Our	code	figures	out	how	many	points	per	cluster	that	works	out	to	first	and	stores	it	in	pointsPerCluster.
Then,	it	builds	up	list	X	that	starts	off	empty.	For	each	cluster,	we're	going	to	create	some	random	centroid
of	income	(incomeCentroid)	between	20,000	and	200,000	dollars	and	some	random	centroid	of	age
(ageCentroid)	between	the	age	of	20	and	70.

What	we're	doing	here	is	creating	a	fake	scatter	plot	that	will	show	income	versus	age	for	N	people	and	k
clusters.	So	for	each	random	centroid	that	we	created,	I'm	then	going	to	create	a	normally	distributed	set
of	random	data	with	a	standard	deviation	of	10,000	in	income	and	a	standard	deviation	of	2	in	age.	That
will	give	us	back	a	bunch	of	age	income	data	that	is	clustered	into	some	pre-existing	clusters	that	we	can
chose	at	random.	OK,	let's	go	ahead	and	run	that.

Now,	to	actually	do	k-means,	you'll	see	how	easy	it	is.

from	sklearn.cluster	import	KMeans	

import	matplotlib.pyplot	as	plt	

from	sklearn.preprocessing	import	scale	

from	numpy	import	random,	float	

	

data	=	createClusteredData(100,	5)	

	

model	=	KMeans(n_clusters=5)	

	

#	Note	I'm	scaling	the	data	to	normalize	it!	Important	for	good	results.	

model	=	model.fit(scale(data))	

	

#	We	can	look	at	the	clusters	each	data	point	was	assigned	to	

print	model.labels_		

	

#	And	we'll	visualize	it:	



plt.figure(figsize=(8,	6))	

plt.scatter(data[:,0],	data[:,1],	c=model.labels_.astype(float))	

plt.show()	

All	you	need	to	do	is	import	KMeans	from	scikit-learn's	cluster	package.	We're	also	going	to	import	matplotlib
so	we	can	visualize	things,	and	also	import	scale	so	we	can	take	a	look	at	how	that	works.

So	we	use	our	createClusteredData()	function	to	say	100	random	people	around	5	clusters.	So	there	are	5
natural	clusters	for	the	data	that	I'm	creating.	We	then	create	a	model,	a	KMeans	model	with	k	of	5,	so
we're	picking	5	clusters	because	we	know	that's	the	right	answer.	But	again,	in	unsupervised	learning	you
don't	necessarily	know	what	the	real	value	of	k	is.	You	need	to	iterate	and	converge	on	it	yourself.	And
then	we	just	call	model.fit	using	my	KMeans	model	using	the	data	that	we	had.

Now	the	scale	I	alluded	to	earlier,	that's	normalizing	the	data.	One	important	thing	with	k-means	is	that	it
works	best	if	your	data	is	all	normalized.	That	means	everything	is	at	the	same	scale.	So	a	problem	that	I
have	here	is	that	my	ages	range	from	20	to	70,	but	my	incomes	range	all	the	way	up	to	200,000.	So	these
values	are	not	really	comparable.	The	incomes	are	much	larger	than	the	age	values.	Scale	will	take	all	that
data	and	scale	it	together	to	a	consistent	scale	so	I	can	actually	compare	these	things	as	apples	to	apples,
and	that	will	help	a	lot	with	your	k-means	results.

So,	once	we've	actually	called	fit	on	our	model,	we	can	actually	look	at	the	resulting	labels	that	we	got.
Then	we	can	actually	visualize	it	using	a	little	bit	of	matplotlib	magic.	You	can	see	in	the	code	we	have	a
little	trick	where	we	assigned	the	color	to	the	labels	that	we	ended	up	with	converted	to	some	floating
point	number.	That's	just	a	little	trick	you	can	use	to	assign	arbitrary	colors	to	a	given	value.	So	let's	see
what	we	end	up	with:

It	didn't	take	that	long.	You	see	the	results	are	basically	what	clusters	I	assigned	everything	into.	We	know



that	our	fake	data	is	already	pre-clustered,	so	it	seems	that	it	identified	the	first	and	second	clusters	pretty
easily.	It	got	a	little	bit	confused	beyond	that	point,	though,	because	our	clusters	in	the	middle	are	actually
a	little	bit	mushed	together.	They're	not	really	that	distinct,	so	that	was	a	challenge	for	k-means.	But
regardless,	it	did	come	up	with	some	reasonable	guesses	at	the	clusters.	This	is	probably	an	example	of
where	four	clusters	would	more	naturally	fit	the	data.





Activity
So	what	I	want	you	to	do	for	an	activity	is	to	try	a	different	value	of	k	and	see	what	you	end	up	with.	Just
eyeballing	the	preceding	graph,	it	looks	like	four	would	work	well.	Does	it	really?	What	happens	if	I
increase	k	too	large?	What	happens	to	my	results?	What	does	it	try	to	split	things	into,	and	does	it	even
make	sense?	So,	play	around	with	it,	try	different	values	of	k.	So	in	the	n_clusters()	function,	change	the	5
to	something	else.	Run	all	through	it	again	and	see	you	end	up	with.

That's	all	there	is	to	k-means	clustering.	It's	just	that	simple.	You	can	just	use	scikit-learn's	KMeans	thing
from	cluster.	The	only	real	gotcha:	make	sure	you	scale	the	data,	normalize	it.	You	want	to	make	sure	the
things	that	you're	using	k-means	on	are	comparable	to	each	other,	and	the	scale()	function	will	do	that	for
you.	So	those	are	the	main	things	for	k-means	clustering.	Pretty	simple	concept,	even	simpler	to	do	it	using
scikit-learn.

That's	all	there	is	to	it.	That's	k-means	clustering.	So	if	you	have	a	bunch	of	data	that	is	unclassified	and
you	don't	really	have	the	right	answers	ahead	of	time,	it's	a	good	way	to	try	to	naturally	find	interesting
groupings	of	your	data,	and	maybe	that	can	give	you	some	insight	into	what	that	data	is.	It's	a	good	tool	to
have.	I've	used	it	before	in	the	real	world	and	it's	really	not	that	hard	to	use,	so	keep	that	in	your	tool
chest.





Measuring	entropy
Quite	soon	we're	going	to	get	to	one	of	the	cooler	parts	of	machine	learning,	at	least	I	think	so,	called
decision	trees.	But	before	we	can	talk	about	that,	it's	a	necessary	to	understand	the	concept	of	entropy	in
data	science.

So	entropy,	just	like	it	is	in	physics	and	thermodynamics,	is	a	measure	of	a	dataset's	disorder,	of	how
same	or	different	the	dataset	is.	So	imagine	we	have	a	dataset	of	different	classifications,	for	example,
animals.	Let's	say	I	have	a	bunch	of	animals	that	I	have	classified	by	species.	Now,	if	all	of	the	animals	in
my	dataset	are	an	iguana,	I	have	very	low	entropy	because	they're	all	the	same.	But	if	every	animal	in	my
dataset	is	a	different	animal,	I	have	iguanas	and	pigs	and	sloths	and	who	knows	what	else,	then	I	would
have	a	higher	entropy	because	there's	more	disorder	in	my	dataset.	Things	are	more	different	than	they	are
the	same.

Entropy	is	just	a	way	of	quantifying	that	sameness	or	difference	throughout	my	data.	So,	an	entropy	of	0
implies	all	the	classes	in	the	data	are	the	same,	whereas	if	everything	is	different,	I	would	have	a	high
entropy,	and	something	in	between	would	be	a	number	in	between.	Entropy	just	describes	how	same	or
different	the	things	in	a	dataset	are.

Now	mathematically,	it's	a	little	bit	more	involved	than	that,	so	when	I	actually	compute	a	number	for
entropy,	it's	computed	using	the	following	expression:

So	for	every	different	class	that	I	have	in	my	data,	I'm	going	to	have	one	of	these	p	terms,	p1,	p2,	and	so	on
and	so	forth	through	pn,	for	n	different	classes	that	I	might	have.	The	p	just	represents	the	proportion	of	the
data	that	is	that	class.	And	if	you	actually	plot	what	this	looks	like	for	each	term-	pi*	ln	*	pi,	it'll	look	a
little	bit	something	like	the	following	graph:

You	add	these	up	for	each	individual	class.	For	example,	if	the	proportion	of	the	data,	that	is,	for	a	given
class	is	0,	then	the	contribution	to	the	overall	entropy	is	0.	And	if	everything	is	that	class,	then	again	the
contribution	to	the	overall	entropy	is	0	because	in	either	case,	if	nothing	is	this	class	or	everything	is	this
class,	that's	not	really	contributing	anything	to	the	overall	entropy.



It's	the	things	in	the	middle	that	contribute	entropy	of	the	class,	where	there's	some	mixture	of	this
classification	and	other	stuff.	When	you	add	all	these	terms	together,	you	end	up	with	an	overall	entropy
for	the	entire	dataset.	So	mathematically,	that's	how	it	works	out,	but	again,	the	concept	is	very	simple.	It's
just	a	measure	of	how	disordered	your	dataset,	how	same	or	different	the	things	in	your	data	are.





Decision	trees	-	Concepts
Believe	it	or	not,	given	a	set	of	training	data,	you	can	actually	get	Python	to	generate	a	flowchart	for	you
to	make	a	decision.	So	if	you	have	something	you're	trying	to	predict	on	some	classification,	you	can	use	a
decision	tree	to	actually	look	at	multiple	attributes	that	you	can	decide	upon	at	each	level	in	the	flowchart.
You	can	print	out	an	actual	flowchart	for	you	to	use	to	make	a	decision	from,	based	on	actual	machine
learning.	How	cool	is	that?	Let's	see	how	it	works.

I	personally	find	decision	trees	are	one	of	the	most	interesting	applications	of	machine	learning.	A
decision	tree	basically	gives	you	a	flowchart	of	how	to	make	some	decision.You	have	some	dependent
variable,	like	whether	or	not	I	should	go	play	outside	today	or	not	based	on	the	weather.	When	you	have	a
decision	like	that	that	depends	on	multiple	attributes	or	multiple	variables,	a	decision	tree	could	be	a
good	choice.

There	are	many	different	aspects	of	the	weather	that	might	influence	my	decision	of	whether	I	should	go
outside	and	play.	It	might	have	to	do	with	the	humidity,	the	temperature,	whether	it's	sunny	or	not,	for
example.	A	decision	tree	can	look	at	all	these	different	attributes	of	the	weather,	or	anything	else,	and
decide	what	are	the	thresholds?	What	are	the	decisions	I	need	to	make	on	each	one	of	those	attributes
before	I	arrive	at	a	decision	of	whether	or	not	I	should	go	play	outside?	That's	all	a	decision	tree	is.	So
it's	a	form	of	supervised	learning.

The	way	it	would	work	in	this	example	would	be	as	follows.	I	would	have	some	sort	of	dataset	of
historical	weather,	and	data	about	whether	or	not	people	went	outside	to	play	on	a	particular	day.	I	would
feed	the	model	this	data	of	whether	it	was	sunny	or	not	on	each	day,	what	the	humidity	was,	and	if	it	was
windy	or	not;	and	whether	or	not	it	was	a	good	day	to	go	play	outside.	Given	that	training	data,	a	decision
tree	algorithm	can	then	arrive	at	a	tree	that	gives	us	a	flowchart	that	we	can	print	out.	It	looks	just	like	the
following	flow	chart.	You	can	just	walk	through	and	figure	out	whether	or	not	it's	a	good	day	to	play
outside	based	on	the	current	attributes.	You	can	use	that	to	predict	the	decision	for	a	new	set	of	values:

How	cool	is	that?	We	have	an	algorithm	that	will	make	a	flowchart	for	you	automatically	just	based	on



observational	data.	What's	even	cooler	is	how	simple	it	all	works	once	you	learn	how	it	works.





Decision	tree	example
Let's	say	I	want	to	build	a	system	that	will	automatically	filter	out	resumes	based	on	the	information	in
them.	A	big	problem	that	technology	companies	have	is	that	we	get	tons	and	tons	of	resumes	for	our
positions.	We	have	to	decide	who	we	actually	bring	in	for	an	interview,	because	it	can	be	expensive	to	fly
somebody	out	and	actually	take	the	time	out	of	the	day	to	conduct	an	interview.	So	what	if	there	were	a
way	to	actually	take	historical	data	on	who	actually	got	hired	and	map	that	to	things	that	are	found	on	their
resume?

We	could	construct	a	decision	tree	that	will	let	us	go	through	an	individual	resume	and	say,	"OK,	this
person	actually	has	a	high	likelihood	of	getting	hired,	or	not".	We	can	train	a	decision	tree	on	that
historical	data	and	walk	through	that	for	future	candidates.	Wouldn't	that	be	a	wonderful	thing	to	have?

So	let's	make	some	totally	fabricated	hiring	data	that	we're	going	to	use	in	this	example:

In	the	preceding	table,	we	have	candidates	that	are	just	identified	by	numerical	identifiers.	I'm	going	to
pick	some	attributes	that	I	think	might	be	interesting	or	helpful	to	predict	whether	or	not	they're	a	good
hire	or	not.	How	many	years	of	experience	do	they	have?	Are	they	currently	employed?	How	many
employers	have	they	had	previous	to	this	one?	What's	their	level	of	education?	What	degree	do	they	have?
Did	they	go	to	what	we	classify	as	a	top-tier	school?	Did	they	do	an	internship	while	they	were	in
college?	We	can	take	a	look	at	this	historical	data,	and	the	dependent	variable	here	is	Hired.	Did	this
person	actually	get	a	job	offer	or	not	based	on	that	information?

Now,	obviously	there's	a	lot	of	information	that	isn't	in	this	model	that	might	be	very	important,	but	the
decision	tree	that	we	train	from	this	data	might	actually	be	useful	in	doing	an	initial	pass	at	weeding	out
some	candidates.	What	we	end	up	with	might	be	a	tree	that	looks	like	the	following:



So	it	just	turns	out	that	in	my	totally	fabricated	data,	anyone	that	did	an	internship	in	college	actually
ended	up	getting	a	job	offer.	So	my	first	decision	point	is	"did	this	person	do	an	internship	or	not?"	If
yes,	go	ahead	and	bring	them	in.	In	my	experience,	internships	are	actually	a	pretty	good	predictor	of
how	good	a	person	is.	If	they	have	the	initiative	to	actually	go	out	and	do	an	internship,	and	actually
learn	something	at	that	internship,	that's	a	good	sign.
Do	they	currently	have	a	job?	Well,	if	they	are	currently	employed,	in	my	very	small	fake	dataset	it
turned	out	that	they	are	worth	hiring,	just	because	somebody	else	thought	they	were	worth	hiring	too.
Obviously	it	would	be	a	little	bit	more	of	a	nuanced	decision	in	the	real	world.
If	they're	not	currently	employed,	do	they	have	less	than	one	prior	employer?	If	yes,	this	person	has
never	held	a	job	and	they	never	did	an	internship	either.	Probably	not	a	good	hire	decision.	Don't
hire	that	person.
But	if	they	did	have	a	previous	employer,	did	they	at	least	go	to	a	top-tier	school?	If	not,	it's	kind	of
iffy.	If	so,	then	yes,	we	should	hire	this	person	based	on	the	data	that	we	trained	on.





Walking	through	a	decision	tree
So	that's	how	you	walk	through	the	results	of	a	decision	tree.	It's	just	like	going	through	a	flowchart,	and
it's	kind	of	awesome	that	an	algorithm	can	produce	this	for	you.	The	algorithm	itself	is	actually	very
simple.	Let	me	explain	how	the	algorithm	works.

At	each	step	of	the	decision	tree	flowchart,	we	find	the	attribute	that	we	can	partition	our	data	on	that
minimizes	the	entropy	of	the	data	at	the	next	step.	So	we	have	a	resulting	set	of	classifications:	in	this	case
hire	or	don't	hire,	and	we	want	to	choose	the	attribute	decision	at	that	step	that	will	minimize	the	entropy
at	the	next	step.

At	each	step	we	want	to	make	all	of	the	remaining	choices	result	in	either	as	many	no	hires	or	as	many
hire	decisions	as	possible.	We	want	to	make	that	data	more	and	more	uniform	so	as	we	work	our	way
down	the	flowchart,	and	we	ultimately	end	up	with	a	set	of	candidates	that	are	either	all	hires	or	all	no
hires	so	we	can	classify	into	yes/no	decisions	on	a	decision	tree.	So	we	just	walk	down	the	tree,	minimize
entropy	at	each	step	by	choosing	the	right	attribute	to	decide	on,	and	we	keep	on	going	until	we	run	out.

There's	a	fancy	name	for	this	algorithm.	It's	called	ID3	(Iterative	Dichotomiser	3).	It	is	what's	known	as
a	greedy	algorithm.	So	as	it	goes	down	the	tree,	it	just	picks	the	attribute	that	will	minimize	entropy	at	that
point.	Now	that	might	not	actually	result	in	an	optimal	tree	that	minimizes	the	number	of	choices	that	you
have	to	make,	but	it	will	result	in	a	tree	that	works,	given	the	data	that	you	gave	it.





Random	forests	technique
Now	one	problem	with	decision	trees	is	that	they	are	very	prone	to	overfitting,	so	you	can	end	up	with	a
decision	tree	that	works	beautifully	for	the	data	that	you	trained	it	on,	but	it	might	not	be	that	great	for
actually	predicting	the	correct	classification	for	new	people	that	it	hasn't	seen	before.	Decision	trees	are
all	about	arriving	at	the	right	decision	for	the	training	data	that	you	gave	it,	but	maybe	you	didn't	really
take	into	account	the	right	attributes,	maybe	you	didn't	give	it	enough	of	a	representative	sample	of	people
to	learn	from.	This	can	result	in	real	problems.

So	to	combat	this	issue,	we	use	a	technique	called	random	forests,	where	the	idea	is	that	we	sample	the
data	that	we	train	on,	in	different	ways,	for	multiple	different	decision	trees.	Each	decision	tree	takes	a
different	random	sample	from	our	set	of	training	data	and	constructs	a	tree	from	it.	Then	each	resulting
tree	can	vote	on	the	right	result.

Now	that	technique	of	randomly	resampling	our	data	with	the	same	model	is	a	term	called	bootstrap
aggregating,	or	bagging.	This	is	a	form	of	what	we	call	ensemble	learning,	which	we'll	cover	in	more
detail	shortly.	But	the	basic	idea	is	that	we	have	multiple	trees,	a	forest	of	trees	if	you	will,	each	that	uses
a	random	subsample	of	the	data	that	we	have	to	train	on.	Then	each	of	these	trees	can	vote	on	the	final
result,	and	that	will	help	us	combat	overfitting	for	a	given	set	of	training	data.

The	other	thing	random	forests	can	do	is	actually	restrict	the	number	of	attributes	that	it	can	choose,
between	at	each	stage,	while	it	is	trying	to	minimize	the	entropy	as	it	goes.	And	we	can	randomly	pick
which	attributes	it	can	choose	from	at	each	level.	So	that	also	gives	us	more	variation	from	tree	to	tree,
and	therefore	we	get	more	of	a	variety	of	algorithms	that	can	compete	with	each	other.	They	can	all	vote
on	the	final	result	using	slightly	different	approaches	to	arriving	at	the	same	answer.

So	that's	how	random	forests	work.	Basically,	it	is	a	forest	of	decision	trees	where	they	are	drawing	from
different	samples	and	also	different	sets	of	attributes	at	each	stage	that	it	can	choose	between.

So,	with	all	that,	let's	go	make	some	decision	trees.	We'll	use	random	forests	as	well	when	we're	done,
because	scikit-learn	makes	it	really	really	easy	to	do,	as	you'll	see	soon.





Decision	trees	-	Predicting	hiring	decisions	using
Python
Turns	out	that	it's	easy	to	make	decision	trees;	in	fact	it's	crazy	just	how	easy	it	is,	with	just	a	few	lines	of
Python	code.	So	let's	give	it	a	try.

I've	included	a	PastHires.csv	file	with	your	book	materials,	and	that	just	includes	some	fabricated	data,	that
I	made	up,	about	people	that	either	got	a	job	offer	or	not	based	on	the	attributes	of	those	candidates.

import	numpy	as	np	

import	pandas	as	pd	

from	sklearn	import	tree	

	

input_file	=	"c:/spark/DataScience/PastHires.csv"	

df	=	pd.read_csv(input_file,	header	=	0)	

You'll	want	to	please	immediately	change	that	path	I	used	here	for	my	own	system
(c:/spark/DataScience/PastHires.csv)	to	wherever	you	have	installed	the	materials	for	this	book.	I'm	not	sure
where	you	put	it,	but	it's	almost	certainly	not	there.

We	will	use	pandas	to	read	our	CSV	in,	and	create	a	DataFrame	object	out	of	it.	Let's	go	ahead	and	run	our
code,	and	we	can	use	the	head()	function	on	the	DataFrame	to	print	out	the	first	few	lines	and	make	sure
that	it	looks	like	it	makes	sense.

df.head()	

Sure	enough	we	have	some	valid	data	in	the	output:

So,	for	each	candidate	ID,	we	have	their	years	of	past	experience,	whether	or	not	they	were	employed,
their	number	of	previous	employers,	their	highest	level	of	education,	whether	they	went	to	a	top-tier
school,	and	whether	they	did	an	internship;	and	finally	here,	in	the	Hired	column,	the	answer	-	where	we
knew	that	we	either	extended	a	job	offer	to	this	person	or	not.

As	usual,	most	of	the	work	is	just	in	massaging	your	data,	preparing	your	data,	before	you	actually	run	the
algorithms	on	it,	and	that's	what	we	need	to	do	here.	Now	scikit-learn	requires	everything	to	be
numerical,	so	we	can't	have	Ys	and	Ns	and	BSs	and	MSs	and	PhDs.	We	have	to	convert	all	those	things	to
numbers	for	the	decision	tree	model	to	work.	The	way	to	do	this	is	to	use	some	short-hand	in	pandas,
which	makes	these	things	easy.	For	example:



d	=	{'Y':	1,	'N':	0}	

df['Hired']	=	df['Hired'].map(d)	

df['Employed?']	=	df['Employed?'].map(d)	

df['Top-tier	school']	=	df['Top-tier	school'].map(d)	

df['Interned']	=	df['Interned'].map(d)	

d	=	{'BS':	0,	'MS':	1,	'PhD':	2}	

df['Level	of	Education']	=	df['Level	of	Education'].map(d)	

df.head()	

Basically,	we're	making	a	dictionary	in	Python	that	maps	the	letter	Y	to	the	number	1,	and	the	letter	N	to
the	value	0.	So,	we	want	to	convert	all	our	Ys	to	1s	and	Ns	to	0s.	So	1	will	mean	yes	and	0	will	mean	no.
What	we	do	is	just	take	the	Hired	column	from	the	DataFrame,	and	call	map()	on	it,	using	a	dictionary.	This
will	go	through	the	entire	Hired	column,	in	the	entire	DataFrame	and	use	that	dictionary	lookup	to
transform	all	the	entries	in	that	column.	It	returns	a	new	DataFrame	column	that	I'm	putting	back	into	the
Hired	column.	This	replaces	the	Hired	column	with	one	that's	been	mapped	to	1s	and	0s.

We	do	the	same	thing	for	Employed,	Top-tier	school	and	Interned,	so	all	those	get	mapped	using	the
yes/no	dictionary.	So,	the	Ys	and	Ns	become	1s	and	0s	instead.	For	the	Level	of	Education,	we	do	the
same	trick,	we	just	create	a	dictionary	that	assigns	BS	to	0,	MS	to	1,	and	PhD	to	2	and	uses	that	to	remap
those	degree	names	to	actual	numerical	values.	So	if	I	go	ahead	and	run	that	and	do	a	head()	again,	you	can
see	that	it	worked:

All	my	yeses	are	1's,	my	nos	are	0's,	and	my	Level	of	Education	is	now	represented	by	a	numerical	value
that	has	real	meaning.

Next	we	need	to	prepare	everything	to	actually	go	into	our	decision	tree	classifier,	which	isn't	that	hard.
To	do	that,	we	need	to	separate	our	feature	information,	which	are	the	attributes	that	we're	trying	to
predict	from,	and	our	target	column,	which	contains	the	thing	that	we're	trying	to	predict.To	extract	the	list
of	feature	name	columns,	we	are	just	going	to	create	a	list	of	columns	up	to	number	6.	We	go	ahead	and
print	that	out.

features	=	list(df.columns[:6])	

features	

We	get	the	following	output:

Above	are	the	column	names	that	contain	our	feature	information:	Years	Experience,	Employed?,



Previous	employers,	Level	of	Education,	Top-tier	school,	and	Interned.	These	are	the	attributes	of
candidates	that	we	want	to	predict	hiring	on.

Next,	we	construct	our	y	vector	which	is	assigned	what	we're	trying	to	predict,	that	is	our	Hired	column:

y	=	df["Hired"]	

X	=	df[features]	

clf	=	tree.DecisionTreeClassifier()	

clf	=	clf.fit(X,y)	

This	code	extracts	the	entire	Hired	column	and	calls	it	y.	Then	it	takes	all	of	our	columns	for	the	feature
data	and	puts	them	in	something	called	X.	This	is	a	collection	of	all	of	the	data	and	all	of	the	feature
columns,	and	X	and	y	are	the	two	things	that	our	decision	tree	classifier	needs.

To	actually	create	the	classifier	itself,	two	lines	of	code:	we	call	tree.DecisionTreeClassifier()	to	create	our
classifier,	and	then	we	fit	it	to	our	feature	data	(X)	and	the	answers	(y)-	whether	or	not	people	were	hired.
So,	let's	go	ahead	and	run	that.

Displaying	graphical	data	is	a	little	bit	tricky,	and	I	don't	want	to	distract	us	too	much	with	the	details
here,	so	please	just	consider	the	following	boilerplate	code.	You	don't	need	to	get	into	how	Graph	viz
works	here	-	and	dot	files	and	all	that	stuff:	it's	not	important	to	our	journey	right	now.	The	code	you	need
to	actually	display	the	end	results	of	a	decision	tree	is	simply:

from	IPython.display	import	Image			

from	sklearn.externals.six	import	StringIO			

import	pydot		

	

dot_data	=	StringIO()			

tree.export_graphviz(clf,	out_file=dot_data,			

																									feature_names=features)			

graph	=	pydot.graph_from_dot_data(dot_data.getvalue())			

Image(graph.create_png())	

So	let's	go	ahead	and	run	this.

This	is	what	your	output	should	now	look	like:



There	we	have	it!	How	cool	is	that?!	We	have	an	actual	flow	chart	here.

Now,	let	me	show	you	how	to	read	it.	At	each	stage,	we	have	a	decision.	Remember	most	of	our	data
which	is	yes	or	no,	is	going	to	be	0	or	1.	So,	the	first	decision	point	becomes:	is	Employed?	less	than	0.5?
Meaning	that	if	we	have	an	employment	value	of	0,	that	is	no,	we're	going	to	go	left.If	employment	is	1,
that	is	yes,	we're	going	to	go	right.

So,	were	they	previously	employed?	If	not	go	left,	if	yes	go	right.	It	turns	out	that	in	my	sample	data,
everyone	who	is	currently	employed	actually	got	a	job	offer,	so	I	can	very	quickly	say	if	you	are	currently
employed,	yes,	you're	worth	bringing	in,	we're	going	to	follow	down	to	the	second	level	here.

So,	how	do	you	interpret	this?	The	gini	score	is	basically	a	measure	of	entropy	that	it's	using	at	each	step.
Remember	as	we're	going	down	the	algorithm	is	trying	to	minimize	the	amount	of	entropy.	And	the
samples	are	the	remaining	number	of	samples	that	haven't	beensectioned	off	by	a	previous	decision.

So	say	this	person	was	employed.	The	way	to	read	the	right	leaf	node	is	the	value	column	that	tells	you	at
this	point	we	have	0	candidates	that	were	no	hires	and	5	that	were	hires.	So	again,	the	way	to	interpret	the
first	decision	point	is	if	Employed?	was	1,	I'm	going	to	go	to	the	right,	meaning	that	they	are	currently
employed,	and	this	brings	me	to	a	world	where	everybody	got	a	job	offer.	So,	that	means	I	should	hire	this
person.

Now	let's	say	that	this	person	doesn't	currently	have	a	job.	The	next	thing	I'm	going	to	look	at	is,	do	they
have	an	internship.	If	yes,	then	we're	at	a	point	where	in	our	training	data	everybody	got	a	job	offer.	So,	at
that	point,	we	can	say	our	entropy	is	now	0	(gini=0.0000),	because	everyone's	the	same,	and	they	all	got	an



offer	at	that	point.	However,	you	know	if	we	keep	going	down(where	the	person	has	not	done	an
internship),we'll	be	at	a	point	where	the	entropy	is	0.32.	It's	getting	lower	and	lower,	that's	a	good	thing.

Next	we're	going	to	look	at	how	much	experience	they	have,	do	they	have	less	than	one	year	of
experience?	And,	if	the	case	is	that	they	do	have	some	experience	and	they've	gotten	this	far	they're	a
pretty	good	no	hire	decision.	We	end	up	at	the	point	where	we	have	zero	entropy	but,	all	three	remaining
samples	in	our	training	set	were	no	hires.	We	have	3	no	hires	and	0	hires.	But,	if	they	do	have	less
experience,	then	they're	probably	fresh	out	of	college,	they	still	might	be	worth	looking	at.

The	final	thing	we're	going	to	look	at	is	whether	or	not	they	went	to	a	Top-tier	school,	and	if	so,	they	end
up	being	a	good	prediction	for	being	a	hire.	If	not,	they	end	up	being	a	no	hire.	We	end	up	with	one
candidate	that	fell	into	that	category	that	was	a	no	hire	and	0	that	were	a	hire.	Whereas,	in	the	case
candidates	did	go	to	a	top	tier	school,	we	have	0	no	hires	and	1	hire.

So,	you	can	see	we	just	keep	going	until	we	reach	an	entropy	of	0,	if	at	all	possible,	for	every	case.





Ensemble	learning	–	Using	a	random	forest
Now,	let's	say	we	want	to	use	a	random	forest,	you	know,	we're	worried	that	we	might	be	over	fitting	our
training	data.	It's	actually	very	easy	to	create	a	random	forest	classifier	of	multiple	decision	trees.

So,	to	do	that,	we	can	use	the	same	data	that	we	created	before.	You	just	need	your	X	and	y	vectors,	that	is
the	set	of	features	and	the	column	that	you're	trying	to	predict	on:

from	sklearn.ensemble	import	RandomForestClassifier	

	

clf	=	RandomForestClassifier(n_estimators=10)	

clf	=	clf.fit(X,	y)	

	

#Predict	employment	of	an	employed	10-year	veteran	

print	clf.predict([[10,	1,	4,	0,	0,	0]])	

#...and	an	unemployed	10-year	veteran	

print	clf.predict([[10,	0,	4,	0,	0,	0]])	

We	make	a	random	forest	classifier,	also	available	from	scikit-learn,	and	pass	it	the	number	of	trees	we
want	in	our	forest.	So,	we	made	ten	trees	in	our	random	forest	in	the	code	above.	We	then	fit	that	to	the
model.

You	don't	have	to	walk	through	the	trees	by	hand,	and	when	you're	dealing	with	a	random	forest	you	can't
really	do	that	anyway.	So,	instead	we	use	the	predict()	function	on	the	model,	that	is	on	the	classifier	that
we	made.	We	pass	in	a	list	of	all	the	different	features	for	a	given	candidate	that	we	want	to	predict
employment	for.

If	you	remember	this	maps	to	these	columns:	Years	Experience,	Employed?,	Previous	employers,	Level	of
Education,	Top-tier	school,	and	Interned;	interpreted	as	numerical	values.	We	predict	the	employment	of
an	employed	10-year	veteran.	We	also	predict	the	employment	of	an	unemployed	10-year	veteran.	And,
sure	enough,	we	get	a	result:

So,	in	this	particular	case,	we	ended	up	with	a	hire	decision	on	both.	But,	what's	interesting	is	there	is	a
random	component	to	that.	You	don't	actually	get	the	same	result	every	time!	More	often	than	not,	the
unemployed	person	does	not	get	a	job	offer,	and	if	you	keep	running	this	you'll	see	that's	usually	the	case.
But,	the	random	nature	of	bagging,	of	bootstrap	aggregating	each	one	of	those	trees,	means	you're	not
going	to	get	the	same	result	every	time.	So,	maybe	10	isn't	quite	enough	trees.	So,	anyway,	that's	a	good
lesson	to	learn	here!





Activity
For	an	activity,	if	you	want	to	go	back	and	play	with	this,	mess	around	with	my	input	data.	Go	ahead	and
edit	the	code	we've	been	exploring,	and	create	an	alternate	universe	where	it's	a	topsy	turvy	world;	for
example,	everyone	that	I	gave	a	job	offer	to	now	doesn't	get	one	and	vice	versa.	See	what	that	does	to
your	decision	tree.	Just	mess	around	with	it	and	see	what	you	can	do	and	try	to	interpret	the	results.

So,	that's	decision	trees	and	random	forests,	one	of	the	more	interesting	bits	of	machine	learning,	in	my
opinion.	I	always	think	it's	pretty	cool	to	just	generate	a	flowchart	out	of	thin	air	like	that.	So,	hopefully
you'll	find	that	useful.

	





Ensemble	learning
When	we	talked	about	random	forests,	that	was	an	example	of	ensemble	learning,	where	we're	actually
combining	multiple	models	together	to	come	up	with	a	better	result	than	any	single	model	could	come	up
with.	So,	let's	learn	about	that	in	a	little	bit	more	depth.	Let's	talk	about	ensemble	learning	a	little	bit
more.

So,	remember	random	forests?	We	had	a	bunch	of	decision	trees	that	were	using	different	subsamples	of
the	input	data,	and	different	sets	of	attributes	that	it	would	branch	on,	and	they	all	voted	on	the	final	result
when	you	were	trying	to	classify	something	at	the	end.	That's	an	example	of	ensemble	learning.	Another
example:	when	we	were	talking	about	k-means	clustering,	we	had	the	idea	of	maybe	using	different	k-
means	models	with	different	initial	random	centroids,	and	letting	them	all	vote	on	the	final	result	as	well.
That	is	also	an	example	of	ensemble	learning.

Basically,	the	idea	is	that	you	have	more	than	one	model,	and	they	might	be	the	same	kind	of	model	or	it
might	be	different	kinds	of	models,	but	you	run	them	all,	on	your	set	of	training	data,	and	they	all	vote	on
the	final	result	for	whatever	it	is	you're	trying	to	predict.	And	oftentimes,	you'll	find	that	this	ensemble	of
different	models	produces	better	results	than	any	single	model	could	on	its	own.

A	good	example,	from	a	few	years	ago,	was	the	Netflix	prize.	Netflix	ran	a	contest	where	they	offered,	I
think	it	was	a	million	dollars,	to	any	researcher	who	could	outperform	their	existing	movie
recommendation	algorithm.	The	ones	that	won	were	ensemble	approaches,	where	they	actually	ran
multiple	recommender	algorithms	at	once	and	let	them	all	vote	on	the	final	result.	So,	ensemble	learning
can	be	a	very	powerful,	yet	simple	tool,	for	increasing	the	quality	of	your	final	results	in	machine
learning.	Let	us	now	try	to	explore	various	types	of	ensemble	learning:

Bootstrap	aggregating	or	bagging:	Now,	random	forests	use	a	technique	called	bagging,	short	for
bootstrap	aggregating.	This	means	that	we	take	random	subsamples	of	our	training	data	and	feed	them
into	different	versions	of	the	same	model	and	let	them	all	vote	on	the	final	result.	If	you	remember,
random	forests	took	many	different	decision	trees	that	use	a	different	random	sample	of	the	training
data	to	train	on,	and	then	they	all	came	together	in	the	end	to	vote	on	a	final	result.	That's	bagging.
Boosting:	Boosting	is	an	alternate	model,	and	the	idea	here	is	that	you	start	with	a	model,	but	each
subsequent	model	boosts	the	attributes	that	address	the	areas	that	were	misclassified	by	the	previous
model.	So,	you	run	train/tests	on	a	model,	you	figure	out	what	are	the	attributes	that	it's	basically
getting	wrong,	and	then	you	boost	those	attributes	in	subsequent	models	-	in	hopes	that	those
subsequent	models	will	pay	more	attention	to	them,	and	get	them	right.	So,	that's	the	general	idea
behind	boosting.	You	run	a	model,	figure	out	its	weak	points,	amplify	the	focus	on	those	weak	points
as	you	go,	and	keep	building	more	and	more	models	that	keep	refining	that	model,	based	on	the
weaknesses	of	the	previous	one.
Bucket	of	models:	Another	technique,	and	this	is	what	that	Netflix	prize-winner	did,	is	called	a
bucket	of	models,	where	you	might	have	entirely	different	models	that	try	to	predict	something.
Maybe	I'm	using	k-means,	a	decision	tree,	and	regression.	I	can	run	all	three	of	those	models	together
on	a	set	of	training	data	and	let	them	all	vote	on	the	final	classification	result	when	I'm	trying	to
predict	something.	And	maybe	that	would	be	better	than	using	any	one	of	those	models	in	isolation.



Stacking:	Stacking	has	the	same	idea.	So,	you	run	multiple	models	on	the	data,	combine	the	results
together	somehow.	The	subtle	difference	here	between	bucket	of	models	and	stacking,	is	that	you
pick	the	model	that	wins.	So,	you'd	run	train/test,	you	find	the	model	that	works	best	for	your	data,
and	you	use	that	model.	By	contrast,	stacking	will	combine	the	results	of	all	those	models	together,	to
arrive	at	a	final	result.

Now,	there	is	a	whole	field	of	research	on	ensemble	learning	that	tries	to	find	the	optimal	ways	of	doing
ensemble	learning,	and	if	you	want	to	sound	smart,	usually	that	involves	using	the	word	Bayes	a	lot.	So,
there	are	some	very	advanced	methods	of	doing	ensemble	learning	but	all	of	them	have	weak	points,	and	I
think	this	is	yet	another	lesson	in	that	we	should	always	use	the	simplest	technique	that	works	well	for	us.

Now	these	are	all	very	complicated	techniques	that	I	can't	really	get	into	in	the	scope	of	this	book,	but	at
the	end	of	the	day,	it's	hard	to	outperform	just	the	simple	techniques	that	we've	already	talked	about.	A
few	of	the	complex	techniques	are	listed	here:

Bayes	optical	classifier:	In	theory,	there's	something	called	the	Bayes	Optimal	Classifier	that	will
always	be	the	best,	but	it's	impractical,	because	it's	computationally	prohibitive	to	do	it.
Bayesian	parameter	averaging:	Many	people	have	tried	to	do	variations	of	the	Bayes	Optimal
Classifier	to	make	it	more	practical,	like	the	Bayesian	Parameter	Averaging	variation.	But	it's	still
susceptible	to	overfitting	and	it's	often	outperformed	by	bagging,	which	is	the	same	idea	behind
random	forests;	you	just	resample	the	data	multiple	times,	run	different	models,	and	let	them	all	vote
on	the	final	result.	Turns	out	that	works	just	as	well,	and	it's	a	heck	of	a	lot	simpler!
Bayesian	model	combination:	Finally,	there's	something	called	Bayesian	Model	Combination	that
tries	to	solve	all	the	shortcomings	of	Bayes	Optimal	Classifier	and	Bayesian	Parameter	Averaging.
But,	at	the	end	of	the	day,	it	doesn't	do	much	better	than	just	cross	validating	against	the	combination
of	models.

Again,	these	are	very	complex	techniques	that	are	very	difficult	to	use.	In	practice,	we're	better	off	with
the	simpler	ones	that	we've	talked	about	in	more	detail.	But,	if	you	want	to	sound	smart	and	use	the	word
Bayes	a	lot	it's	good	to	be	familiar	with	these	techniques	at	least,	and	know	what	they	are.

So,	that's	ensemble	learning.	Again,	the	takeaway	is	that	the	simple	techniques,	like	bootstrap	aggregating,
or	bagging,	or	boosting,	or	stacking,	or	bucket	of	models,	are	usually	the	right	choices.	There	are	some
much	fancier	techniques	out	there	but	they're	largely	theoretical.	But,	at	least	you	know	about	them	now.

It's	always	a	good	idea	to	try	ensemble	learning	out.	It's	been	proven	time	and	time	again	that	it	will
produce	better	results	than	any	single	model,	so	definitely	consider	it!





Support	vector	machine	overview
Finally,	we're	going	to	talk	about	support	vector	machines	(SVM),	which	is	a	very	advanced	way	of
clustering	or	classifying	higher	dimensional	data.

So,	what	if	you	have	multiple	features	that	you	want	to	predict	from?	SVM	can	be	a	very	powerful	tool	for
doing	that,	and	the	results	can	be	scarily	good!	It's	very	complicated	under	the	hood,	but	the	important
things	are	understanding	when	to	use	it,	and	how	it	works	at	a	higher	level.	So,	let's	cover	SVM	now.

Support	vector	machines	is	a	fancy	name	for	what	actually	is	a	fancy	concept.	But	fortunately,	it's	pretty
easy	to	use.	The	important	thing	is	knowing	what	it	does,	and	what	it's	good	for.	So,	support	vector
machines	works	well	for	classifying	higher-dimensional	data,	and	by	that	I	mean	lots	of	different	features.
So,	it's	easy	to	use	something	like	k-means	clustering,	to	cluster	data	that	has	two	dimensions,	you	know,
maybe	age	on	one	axis	and	income	on	another.	But,	what	if	I	have	many,	many	different	features	that	I'm
trying	to	predict	from.	Well,	support	vector	machines	might	be	a	good	way	of	doing	that.

Support	vector	machines	finds	higher-dimensional	support	vectors	across	which	to	divide	the	data
(mathematically,	these	support	vectors	define	hyperplanes).	That	is,	mathematically,	what	support	vector
machines	can	do	is	find	higher	dimensional	support	vectors	(that's	where	it	gets	its	name	from)	that	define
the	higher-dimensional	planes	that	split	the	data	into	different	clusters.

Obviously	the	math	gets	pretty	weird	pretty	quickly	with	all	this.	Fortunately,	the	scikit-learn	package	will
do	it	all	for	you,	without	you	having	to	actually	get	into	it.	Under	the	hood,	you	need	to	understand	though
that	it	uses	something	called	the	kernel	trick	to	actually	find	those	support	vectors	or	hyperplanes	that
might	not	be	apparent	in	lower	dimensions.	There	are	different	kernels	you	can	use,	to	do	this	in	different
ways.	The	main	point	is	that	SVM's	are	a	good	choice	if	you	have	higher-	dimensional	data	with	lots	of
different	features,	and	there	are	different	kernels	you	can	use	that	have	varying	computational	costs	and
might	be	better	fits	for	the	problem	at	hand.

The	important	point	is	that	SVMs	employ	some	advanced	mathematical	trickery	to	cluster
data,	and	it	can	handle	data	sets	with	lots	of	features.	It's	also	fairly	expensive	-	the
"kernel	trick"	is	the	only	thing	that	makes	it	possible.

I	want	to	point	out	that	SVM	is	a	supervised	learning	technique.	So,	we're	actually	going	to	train	it	on	a
set	of	training	data,	and	we	can	use	that	to	make	predictions	for	future	unseen	data	or	test	data.	It's	a	little
bit	different	than	k-means	clustering	and	that	k-means	was	completely	unsupervised;	with	a	support	vector
machine,	by	contrast,	it	is	training	based	on	actual	training	data	where	you	have	the	answer	of	the	correct
classification	for	some	set	of	data	that	it	can	learn	from.	So,	SVM's	are	useful	for	classification	and
clustering,	if	you	will	-	but	it's	a	supervised	technique!

One	example	that	you	often	see	with	SVMs	is	using	something	called	support	vector	classification.	The
typical	example	uses	the	Iris	dataset	which	is	one	of	the	sample	datasets	that	comes	with	scikit-learn.	This
set	is	a	classification	of	different	flowers,	different	observations	of	different	Iris	flowers	and	their
species.	The	idea	is	to	classify	these	using	information	about	the	length	and	width	of	the	petal	on	each
flower,	and	the	length	and	width	of	the	sepal	of	each	flower.	(The	sepal,	apparently,	is	a	little	support



structure	underneath	the	petal.	I	didn't	know	that	until	now	either.)	You	have	four	dimensions	of	attributes
there;	you	have	the	length	and	width	of	the	petal,	and	the	length	and	the	width	of	the	sepal.	You	can	use
that	to	predict	the	species	of	an	Iris	given	that	information.

Here's	an	example	of	doing	that	with	SVC:	basically,	we	have	sepal	width	and	sepal	length	projected
down	to	two	dimensions	so	we	can	actually	visualize	it:

With	different	kernels	you	might	get	different	results.	SVC	with	a	linear	kernel	will	produce	something
very	much	as	you	see	in	the	preceding	image.	You	can	use	polynomial	kernels	or	fancier	kernels	that	might
project	down	to	curves	in	two	dimensions	as	shown	in	the	image.	You	can	do	some	pretty	fancy
classification	this	way.

These	have	increasing	computational	costs,	and	they	can	produce	more	complex	relationships.	But	again,
it's	a	case	where	too	much	complexity	can	yield	misleading	results,	so	you	need	to	be	careful	and	actually
use	train/test	when	appropriate.	Since	we	are	doing	supervised	learning,	you	can	actually	do	train/test	and
find	the	right	model	that	works,	or	maybe	use	an	ensemble	approach.

You	need	to	arrive	at	the	right	kernel	for	the	task	at	hand.	For	things	like	polynomial	SVC,	what's	the	right
degree	polynomial	to	use?	Even	things	like	linear	SVC	will	have	different	parameters	associated	with
them	that	you	might	need	to	optimize	for.	This	will	make	more	sense	with	a	real	example,	so	let's	dive	into
some	actual	Python	code	and	see	how	it	works!





Using	SVM	to	cluster	people	by	using	scikit-learn
Let's	try	out	some	support	vector	machines	here.	Fortunately,	it's	a	lot	easier	to	use	than	it	is	to	understand.
We're	going	to	go	back	to	the	same	example	I	used	for	k-means	clustering,	where	I'm	going	to	create	some
fabricated	cluster	data	about	ages	and	incomes	of	a	hundred	random	people.

If	you	want	to	go	back	to	the	k-means	clustering	section,	you	can	learn	more	about	kind	of	the	idea	behind
this	code	that	generates	the	fake	data.	And	if	you're	ready,	please	consider	the	following	code:

import	numpy	as	np	

	

#Create	fake	income/age	clusters	for	N	people	in	k	clusters	

def	createClusteredData(N,	k):	

				pointsPerCluster	=	float(N)/k	

				X	=	[]	

				y	=	[]	

				for	i	in	range	(k):	

								incomeCentroid	=	np.random.uniform(20000.0,	200000.0)	

								ageCentroid	=	np.random.uniform(20.0,	70.0)	

								for	j	in	range(int(pointsPerCluster)):	

												X.append([np.random.normal(incomeCentroid,	10000.0),		

												np.random.normal(ageCentroid,	2.0)])	

												y.append(i)	

				X	=	np.array(X)	

				y	=	np.array(y)	

				return	X,	y	

Please	note	that	because	we're	using	supervised	learning	here,	we	not	only	need	the	feature	data	again,	but
we	also	need	the	actual	answers	for	our	training	dataset.

What	the	createClusteredData()	function	does	here,	is	to	create	a	bunch	of	random	data	for	people	that	are
clustered	around	k	points,	based	on	age	and	income,	and	it	returns	two	arrays.	The	first	array	is	the	feature
array,	that	we're	calling	X,	and	then	we	have	the	array	of	the	thing	we're	trying	to	predict	for,	which	we're
calling	y.	A	lot	of	times	in	scikit-learn	when	you're	creating	a	model	that	you	can	predict	from,	those	are
the	two	inputs	that	it	will	take,	a	list	of	feature	vectors,	and	the	thing	that	you're	trying	to	predict,	that	it
can	learn	from.	So,	we'll	go	ahead	and	run	that.

So	now	we're	going	to	use	the	createClusteredData()	function	to	create	100	random	people	with	5	different
clusters.	We	will	just	create	a	scatter	plot	to	illustrate	those,	and	see	where	they	land	up:

%matplotlib	inline	

from	pylab	import	*	

	

(X,	y)	=	createClusteredData(100,	5)	

	

plt.figure(figsize=(8,	6))	

plt.scatter(X[:,0],	X[:,1],	c=y.astype(np.float))	

plt.show()	

The	following	graph	shows	our	data	that	we're	playing	with.	Every	time	you	run	this	you're	going	to	get	a
different	set	of	clusters.	So,	you	know,	I	didn't	actually	use	a	random	seed...	to	make	life	interesting.

A	couple	of	new	things	here--I'm	using	the	figsize	parameter	on	plt.figure()	to	actually	make	a	larger	plot.
So,	if	you	ever	need	to	adjust	the	size	in	matplotlib,	that's	how	you	do	it.	I'm	using	that	same	trick	of	using
the	color	as	the	classification	number	that	I	end	up	with.	So	the	number	of	the	cluster	that	I	started	with	is



being	plotted	as	the	color	of	these	data	points.	You	can	see,	it's	a	pretty	challenging	problem,	there's
definitely	some	intermingling	of	clusters	here:

Now	we	can	use	linear	SVC	(SVC	is	a	form	of	SVM),	to	actually	partition	that	into	clusters.	We're	going
to	use	SVM	with	a	linear	kernel,	and	with	a	C	value	of	1.0.	C	is	just	an	error	penalty	term	that	you	can
adjust;	it's	1	by	default.	Normally,	you	won't	want	to	mess	with	that,	but	if	you're	doing	some	sort	of
convergence	on	the	right	model	using	ensemble	learning	or	train/test,	that's	one	of	the	things	you	can	play
with.	Then,	we	will	fit	that	model	to	our	feature	data,	and	the	actual	classifications	that	we	have	for	our
training	dataset.

from	sklearn	import	svm,	datasets	

	

C	=	1.0	

svc	=	svm.SVC(kernel='linear',	C=C).fit(X,	y)	

So,	let's	go	ahead	and	run	that.	I	don't	want	to	get	too	much	into	how	we're	actually	going	to	visualize	the
results	here,	just	take	it	on	faith	that	plotPredictions()	is	a	function	that	can	plot	the	classification	ranges	and
SVC.

It	helps	us	visualize	where	different	classifications	come	out.	Basically,	it's	creating	a	mesh	across	the
entire	grid,	and	it	will	plot	different	classifications	from	the	SVC	models	as	different	colors	on	that	grid,
and	then	we're	going	to	plot	our	original	data	on	top	of	that:

def	plotPredictions(clf):	

				xx,	yy	=	np.meshgrid(np.arange(0,	250000,	10),	

																					np.arange(10,	70,	0.5))	

				Z	=	clf.predict(np.c_[xx.ravel(),	yy.ravel()])	

	

				plt.figure(figsize=(8,	6))	

				Z	=	Z.reshape(xx.shape)	

				plt.contourf(xx,	yy,	Z,	cmap=plt.cm.Paired,	alpha=0.8)	

				plt.scatter(X[:,0],	X[:,1],	c=y.astype(np.float))	

				plt.show()	

	

plotPredictions(svc)	



So,	let's	see	how	that	works	out.	SVC	is	computationally	expensive,	so	it	takes	a	long	time	to	run:

You	can	see	here	that	it	did	its	best.	Given	that	it	had	to	draw	straight	lines,	and	polygonal	shapes,	it	did	a
decent	job	of	fitting	to	the	data	that	we	had.	So,	you	know,	it	did	miss	a	few	-	but	by	and	large,	the	results
are	pretty	good.

SVC	is	actually	a	very	powerful	technique;	it's	real	strength	is	in	higher	dimensional	feature	data.	Go
ahead	and	play	with	it.	By	the	way	if	you	want	to	not	just	visualize	the	results,	you	can	use	the	predict()
function	on	the	SVC	model,	just	like	on	pretty	much	any	model	in	scikit-learn,	to	pass	in	a	feature	array
that	you're	interested	in.	If	I	want	to	predict	the	classification	for	someone	making	$200,000	a	year	who
was	40	years	old,	I	would	use	the	following	code:

svc.predict([[200000,	40]])

This	would	put	that	person	in,	in	our	case,	cluster	number	1:

If	I	had	a	someone	making	$50,000	here	who	was	65,	I	would	use	the	following	code:

svc.predict([[50000,	65]])

This	is	what	your	output	should	now	look	like:

That	person	would	end	up	in	cluster	number	2,	whatever	that	represents	in	this	example.	So,	go	ahead	and
play	with	it.





Activity
Now,	linear	is	just	one	of	many	kernels	that	you	can	use,	like	I	said	there	are	many	different	kernels	you
can	use.	One	of	them	is	a	polynomial	model,	so	you	might	want	to	play	with	that.	Please	do	go	ahead	and
look	up	the	documentation.	It's	good	practice	for	you	to	looking	at	the	docs.	If	you're	going	to	be	using
scikit-learn	in	any	sort	of	depth,	there's	a	lot	of	different	capabilities	and	options	that	you	have	available
to	you.	So,	go	look	up	scikit-learn	online,	find	out	what	the	other	kernels	are	for	the	SVC	method,	and	try
them	out,	see	if	you	actually	get	better	results	or	not.

This	is	a	little	exercise,	not	just	in	playing	with	SVM	and	different	kinds	of	SVC,	but	also	in	familiarizing
yourself	with	how	to	learn	more	on	your	own	about	SVC.	And,	honestly,	a	very	important	trait	of	any	data
scientist	or	engineer	is	going	to	be	the	ability	to	go	and	look	up	information	yourself	when	you	don't	know
the	answers.

So,	you	know,	I'm	not	being	lazy	by	not	telling	you	what	those	other	kernels	are,	I	want	you	to	get	used	to
the	idea	of	having	to	look	this	stuff	up	on	your	own,	because	if	you	have	to	ask	someone	else	about	these
things	all	the	time	you're	going	to	get	really	annoying,	really	fast	in	a	workplace.	So,	go	look	that	up,	play
around	it,	see	what	you	come	up	with.

So,	that's	SVM/SVC,	a	very	high	power	technique	that	you	can	use	for	classifying	data,	in	supervised
learning.	Now	you	know	how	it	works	and	how	to	use	it,	so	keep	that	in	your	bag	of	tricks!





Summary
In	this	chapter,	we	saw	some	interesting	machine	learning	techniques.	We	covered	one	of	the	fundamental
concepts	behind	machine	learning	called	train/test.	We	saw	how	to	use	train/test	to	try	to	find	the	right
degree	polynomial	to	fit	a	given	set	of	data.	We	then	analyzed	the	difference	between	supervised	and
unsupervised	machine	learning.

We	saw	how	to	implement	a	spam	classifier	and	enable	it	to	determine	whether	an	email	is	spam	or	not
using	the	Naive	Bayes	technique.	We	talked	about	k-means	clustering,	an	unsupervised	learning	technique,
which	helps	group	data	into	clusters.	We	also	looked	at	an	example	using	scikit-learn	which	clustered
people	based	on	their	income	and	age.

We	then	went	on	to	look	at	the	concept	of	entropy	and	how	to	measure	it.	We	walked	through	the	concept
of	decision	trees	and	how,	given	a	set	of	training	data,	you	can	actually	get	Python	to	generate	a	flowchart
for	you	to	actually	make	a	decision.	We	also	built	a	system	that	automatically	filters	out	resumes	based	on
the	information	in	them	and	predicts	the	hiring	decision	of	a	person.

We	learned	along	the	way	the	concept	of	ensemble	learning,	and	we	concluded	by	talking	about	support
vector	machines,	which	is	a	very	advanced	way	of	clustering	or	classifying	higher	dimensional	data.	We
then	moved	on	to	use	SVM	to	cluster	people	using	scikit-learn.	In	the	next	chapter,	we'll	talk	about
recommender	systems.



	



Recommender	Systems
	

Let's	talk	about	my	personal	area	of	expertiseâ€”recommender	systems,	so	systems	that	can	recommend
stuff	to	people	based	on	what	everybody	else	did.	We'll	look	at	some	examples	of	this	and	a	couple	of
ways	to	do	it.	Specifically,	two	techniques	called	user-based	and	item-based	collaborative	filtering.	So,
let's	dive	in.

I	spent	most	of	my	career	at	amazon.com	and	imdb.com,	and	a	lot	of	what	I	did	there	was	developing
recommender	systems;	things	like	people	who	bought	this	also	bought,	or	recommended	for	you,	and
things	that	did	movie	recommendations	for	people.	So,	this	is	something	I	know	a	lot	about	personally,
and	I	hope	to	share	some	of	that	knowledge	with	you.	We'll	walk	through,	step	by	step,	covering	the
following	topics:

What	are	recommender	systems?
User-based	collaborative	filtering
Item-based	collaborative	filtering
Finding	movie	similarities
Making	movie	recommendations	to	people
Improving	the	recommender's	results

	

	

http://amazon.com
http://imdb.com




What	are	recommender	systems?
Well,	like	I	said	Amazon	is	a	great	example,	and	one	I'm	very	familiar	with.	So,	if	you	go	to	their
recommendations	section,	as	shown	in	the	following	image,	you	can	see	that	it	will	recommend	things	that
you	might	be	interested	in	purchasing	based	on	your	past	behavior	on	the	site.

The	recommender	system	might	include	things	that	you've	rated,	or	things	that	you	bought,	and	other	data
as	well.	I	can't	go	into	the	details	because	they'll	hunt	me	down,	and	you	know,	do	bad	things	to	me.	But,
it's	pretty	cool.	You	can	also	think	of	the	people	who	bought	this	also	bought	feature	on	Amazon	as	a
form	of	recommender	system.

The	difference	is	that	the	recommendations	you're	seeing	on	your	Amazon	recommendations	page	are
based	on	all	of	your	past	behavior,	whereas	people	who	bought	this	also	bought	or	people	who	viewed
this	also	viewed,	things	like	that,	are	just	based	on	the	thing	you're	looking	at	right	now,	and	showing	you
things	that	are	similar	to	it	that	you	might	also	be	interested	in.	And,	it	turns	out,	what	you're	doing	right
now	is	probably	the	strongest	signal	of	your	interest	anyhow.

Another	example	is	from	Netflix,	as	shown	in	the	following	image	(the	following	image	is	a	screenshot
from	Netflix):



They	have	various	features	that	try	to	recommend	new	movies	or	other	movies	you	haven't	seen	yet,	based
on	the	movies	that	you	liked	or	watched	in	the	past	as	well,	and	they	break	that	down	by	genre.	They	have
kind	of	a	different	spin	on	things,	where	they	try	to	identify	the	genres	or	the	types	of	movies	that	they
think	you're	enjoying	the	most	and	they	then	show	you	more	results	from	those	genres.	So,	that's	another
example	of	a	recommender	system	in	action.

The	whole	point	of	it	is	to	help	you	discover	things	you	might	not	know	about	before,	so	it's	pretty	cool.
You	know,	it	gives	individual	movies,	or	books,	or	music,	or	whatever,	a	chance	to	be	discovered	by
people	who	might	not	have	heard	about	them	before.	So,	you	know,	not	only	is	it	cool	technology,	it	also
kind	of	levels	the	playing	field	a	little	bit,	and	helps	new	items	get	discovered	by	the	masses.	So,	it	plays
a	very	important	role	in	today's	society,	at	least	I'd	like	to	think	so!	There	are	few	ways	of	doing	this,	and
we'll	look	at	the	main	ones	in	this	chapter.





User-based	collaborative	filtering
First,	let's	talk	about	recommending	stuff	based	on	your	past	behavior.	One	technique	is	called	user-based
collaborative	filtering,	and	here's	how	it	works:

Collaborative	filtering,	by	the	way,	is	just	a	fancy	name	for	saying	recommending	stuff
based	on	the	combination	of	what	you	did	and	what	everybody	else	did,	okay?	So,	it's
looking	at	your	behavior	and	comparing	that	to	everyone	else's	behavior,	to	arrive	at	the
things	that	might	be	interesting	to	you	that	you	haven't	heard	of	yet.

1.	 The	idea	here	is	we	build	up	a	matrix	of	everything	that	every	user	has	ever	bought,	or	viewed,	or
rated,	or	whatever	signal	of	interest	that	you	want	to	base	the	system	on.	So	basically,	we	end	up
with	a	row	for	every	user	in	our	system,	and	that	row	contains	all	the	things	they	did	that	might
indicate	some	sort	of	interest	in	a	given	product.	So,	picture	a	table,	I	have	users	for	the	rows,	and
each	column	is	an	item,	okay?	That	might	be	a	movie,	a	product,	a	web	page,	whatever;	you	can	use
this	for	many	different	things.

2.	 I	then	use	that	matrix	to	compute	the	similarity	between	different	users.	So,	I	basically	treat	each	row
of	this	as	a	vector	and	I	can	compute	the	similarity	between	each	vector	of	users,	based	on	their
behavior.

3.	 Two	users	who	liked	mostly	the	same	things	would	be	very	similar	to	each	other	and	I	can	then	sort
this	by	those	similarity	scores.	If	I	can	find	all	the	users	similar	to	you	based	on	their	past	behavior,	I
can	then	find	the	users	most	similar	to	me,	and	recommend	stuff	that	they	liked	that	I	didn't	look	at
yet.

Let's	look	at	a	real	example,	and	it'll	make	a	little	bit	more	sense:

Let's	say	that	this	nice	lady	in	the	preceding	image	watched	Star	Wars	and	The	Empire	Strikes	Back	and
she	loved	them	both.	So,	we	have	a	user	vector,	of	this	lady,	giving	a	5-star	rating	to	Star	Wars	and	The
Empire	Strikes	Back.



Let's	also	say	Mr.	Edgy	Mohawk	Man	comes	along	and	he	only	watched	Star	Wars.	That's	the	only	thing
he's	seen,	he	doesn't	know	about	The	Empire	Strikes	Back	yet,	somehow,	he	lives	in	some	strange
universe	where	he	doesn't	know	that	there	are	actually	many,	many	Star	Wars	movies,	growing	every	year
in	fact.

We	can	of	course	say	that	this	guy's	actually	similar	to	this	other	lady	because	they	both	enjoyed	Star	Wars
a	lot,	so	their	similarity	score	is	probably	fairly	good	and	we	can	say,	okay,	well,	what	has	this	lady
enjoyed	that	he	hasn't	seen	yet?	And,	The	Empire	Strikes	Back	is	one,	so	we	can	then	take	that	information
that	these	two	users	are	similar	based	on	their	enjoyment	of	Star	Wars,	find	that	this	lady	also	liked	The
Empire	Strikes	Back,	and	then	present	that	as	a	good	recommendation	for	Mr.	Edgy	Mohawk	Man.

We	can	then	go	ahead	and	recommend	The	Empire	Strikes	Back	to	him	and	he'll	probably	love	it,	because
in	my	opinion,	it's	actually	a	better	film!	But	I'm	not	going	to	get	into	geek	wars	with	you	here.





Limitations	of	user-based	collaborative	filtering
Now,	unfortunately,	user-based	collaborative	filtering	has	some	limitations.	When	we	think	about
relationships	and	recommending	things	based	on	relationships	between	items	and	people	and	whatnot,	our
mind	tends	to	go	on	relationships	between	people.	So,	we	want	to	find	people	that	are	similar	to	you	and
recommend	stuff	that	they	liked.	That's	kind	of	the	intuitive	thing	to	do,	but	it's	not	the	best	thing	to	do!	The
following	is	the	list	of	some	limitations	of	user-based	collaborative	filtering:

One	problem	is	that	people	are	fickle;	their	tastes	are	always	changing.	So,	maybe	that	nice	lady	in
the	previous	example	had	sort	of	a	brief	science	fiction	action	film	phase	that	she	went	through	and
then	she	got	over	it,	and	maybe	later	in	her	life	she	started	getting	more	into	dramas	or	romance	films
or	romcoms.	So,	what	would	happen	if	my	Edgy	Mohawk	guy	ended	up	with	a	high	similarity	to	her
just	based	on	her	earlier	sci-fi	period,	and	we	ended	up	recommending	romantic	comedies	to	him	as
a	result?	That	would	be	bad.	I	mean,	there	is	some	protection	against	that	in	terms	of	how	we
compute	the	similarity	scores	to	begin	with,	but	it	still	pollutes	our	data	that	people's	tastes	can
change	over	time.	So,	comparing	people	to	people	isn't	always	a	straightforward	thing	to	do,	because
people	change.
The	other	problem	is	that	there's	usually	a	lot	more	people	than	there	are	things	in	your	system,	so	7
billion	people	in	the	world	and	counting,	there's	probably	not	7	billion	movies	in	the	world,	or	7
billion	items	that	you	might	be	recommending	out	of	your	catalog.	The	computational	problem
finding	all	the	similarities	between	all	of	the	users	in	your	system	is	probably	much	greater	than	the
problem	of	finding	similarities	between	the	items	in	your	system.	So,	by	focusing	the	system	on
users,	you're	making	your	computational	problem	a	lot	harder	than	it	might	need	to	be,	because	you
have	a	lot	of	users,	at	least	hopefully	you	do	if	you're	working	for	a	successful	company.
The	final	problem	is	that	people	do	bad	things.	There's	a	very	real	economic	incentive	to	make	sure
that	your	product	or	your	movie	or	whatever	it	is	gets	recommended	to	people,	and	there	are	people
who	try	to	game	the	system	to	make	that	happen	for	their	new	movie,	or	their	new	product,	or	their
new	book,	or	whatever.

It's	pretty	easy	to	fabricate	fake	personas	in	the	system	by	creating	a	new	user	and
having	them	do	a	sequence	of	events	that	likes	a	lot	of	popular	items	and	then	likes	your
item	too.	This	is	called	a	shilling	attack,	and	we	want	to	ideally	have	a	system	that	can
deal	with	that.

There	is	research	around	how	to	detect	and	avoid	these	shilling	attacks	in	user-based	collaborative
filtering,	but	an	even	better	approach	would	be	to	use	a	totally	different	approach	entirely	that's	not	so
susceptible	to	gaming	the	system.

That's	user-based	collaborative	filtering.	Again,	it's	a	simple	concept-you	look	at	similarities	between
users	based	on	their	behavior,	and	recommend	stuff	that	a	user	enjoyed	that	was	similar	to	you,	that	you
haven't	seen	yet.	Now,	that	does	have	its	limitations	as	we	talked	about.	So,	let's	talk	about	flipping	the
whole	thing	on	its	head,	with	a	technique	called	item-based	collaborative	filtering.





Item-based	collaborative	filtering
Let's	now	try	to	address	some	of	the	shortcomings	in	user-based	collaborative	filtering	with	a	technique
called	item-based	collaborative	filtering,	and	we'll	see	how	that	can	be	more	powerful.	It's	actually	one
of	the	techniques	that	Amazon	uses	under	the	hood,	and	they've	talked	about	this	publicly	so	I	can	tell	you
that	much,	but	let's	see	why	it's	such	a	great	idea.	With	user-based	collaborative	filtering	we	base	our
recommendations	on	relationships	between	people,	but	what	if	we	flip	that	and	base	them	on	relationships
between	items?	That's	what	item-based	collaborative	filtering	is.

	





Understanding	item-based	collaborative	filtering
This	is	going	to	draw	on	a	few	insights.	For	one	thing,	we	talked	about	people	being	fickle-their	tastes	can
change	over	time,	so	comparing	one	person	to	another	person	based	on	their	past	behavior	becomes	pretty
complicated.	People	have	different	phases	where	they	have	different	interests,	and	you	might	not	be
comparing	the	people	that	are	in	the	same	phase	to	each	other.	But,	an	item	will	always	be	whatever	it	is.
A	movie	will	always	be	a	movie,	it's	never	going	to	change.	Star	Wars	will	always	be	Star	Wars,	well
until	George	Lucas	tinkers	with	it	a	little	bit,	but	for	the	most	part,	items	do	not	change	as	much	as	people
do.	So,	we	know	that	these	relationships	are	more	permanent,	and	there's	more	of	a	direct	comparison	you
can	make	when	computing	similarity	between	items,	because	they	do	not	change	over	time.

The	other	advantage	is	that	there	are	generally	fewer	things	that	you're	trying	to	recommend	than	there	are
people	you're	recommending	to.	So	again,	7	billion	people	in	the	world,	you're	probably	not	offering	7
billion	things	on	your	website	to	recommend	to	them,	so	you	can	save	a	lot	of	computational	resources	by
evaluating	relationships	between	items	instead	of	users,	because	you	will	probably	have	fewer	items	than
you	have	users	in	your	system.	That	means	you	can	run	your	recommendations	more	frequently,	make	them
more	current,	more	up-to-date,	and	better!	You	can	use	more	complicated	algorithms	because	you	have
less	relationships	to	compute,	and	that's	a	good	thing!

It's	also	harder	to	game	the	system.	So,	we	talked	about	how	easy	it	is	to	game	a	user-based	collaborative
filtering	approach	by	just	creating	some	fake	users	that	like	a	bunch	of	popular	stuff	and	then	the	thing
you're	trying	to	promote.	With	item-based	collaborative	filtering	that	becomes	much	more	difficult.	You
have	to	game	the	system	into	thinking	there	are	relationships	between	items,	and	since	you	probably	don't
have	the	capability	to	create	fake	items	with	fake	ties	to	other	items	based	on	many,	many	other	users,	it's
a	lot	harder	to	game	an	item-based	collaborative	filtering	system,	which	is	a	good	thing.

While	I'm	on	the	topic	of	gaming	the	system,	another	important	thing	is	to	make	sure	that	people	are	voting
with	their	money.	A	general	technique	for	avoiding	shilling	attacks	or	people	trying	to	game	your
recommender	system,	is	to	make	sure	that	the	signal	behavior	is	based	on	people	actually	spending	money.
So,	you're	always	going	to	get	better	and	more	reliable	results	when	you	base	recommendations	on	what
people	actually	bought,	as	opposed	to	what	they	viewed	or	what	they	clicked	on,	okay?





How	item-based	collaborative	filtering	works?
Alright,	let's	talk	about	how	item-based	collaborative	filtering	works.	It's	very	similar	to	user-based
collaborative	filtering,	but	instead	of	users,	we're	looking	at	items.

So,	let's	go	back	to	the	example	of	movie	recommendations.	The	first	thing	we	would	do	is	find	every	pair
of	movies	that	is	watched	by	the	same	person.	So,	we	go	through	and	find	every	movie	that	was	watched
by	identical	people,	and	then	we	measure	the	similarity	of	all	those	people	who	viewed	that	movie	to
each	other.	So,	by	this	means	we	can	compute	similarities	between	two	different	movies,	based	on	the
ratings	of	the	people	who	watched	both	of	those	movies.

So,	let's	presume	I	have	a	movie	pair,	okay?	Maybe	Star	Wars	and	The	Empire	Strikes	Back.	I	find	a	list
of	everyone	who	watched	both	of	those	movies,	then	I	compare	their	ratings	to	each	other,	and	if	they're
similar	then	I	can	say	these	two	movies	are	similar,	because	they	were	rated	similarly	by	people	who
watched	both	of	them.	That's	the	general	idea	here.	That's	one	way	to	do	it,	there's	more	than	one	way	to
do	it!

And	then	I	can	just	sort	everything	by	the	movie,	and	then	by	the	similarity	strength	of	all	the	similar
movies	to	it,	and	there's	my	results	for	people	who	liked	also	liked,	or	people	who	rated	this	highly	also
rated	this	highly	and	so	on	and	so	forth.	And	like	I	said,	that's	just	one	way	of	doing	it.

That's	step	one	of	item-based	collaborative	filtering-first	I	find	relationships	between	movies	based	on
the	relationships	of	the	people	who	watched	every	given	pair	of	movies.	It'll	make	more	sense	when	we
go	through	the	following	example:

For	example,	let's	say	that	our	nice	young	lady	in	the	preceding	image	watched	Star	Wars	and	The	Empire



Strikes	Back	and	liked	both	of	them,	so	rated	them	both	five	stars	or	something.	Now,	along	comes	Mr.
Edgy	Mohawk	Man	who	also	watched	Star	Wars	and	The	Empire	Strikes	Back	and	also	liked	both	of
them.	So,	at	this	point	we	can	say	there's	a	relationship,	there	is	a	similarity	between	Star	Wars	and	The
Empire	Strikes	Back	based	on	these	two	users	who	liked	both	movies.

What	we're	going	to	do	is	look	at	each	pair	of	movies.	We	have	a	pair	of	Star	Wars	and	Empire	Strikes
Back,	and	then	we	look	at	all	the	users	that	watched	both	of	them,	which	are	these	two	guys,	and	if	they
both	liked	them,	then	we	can	say	that	they're	similar	to	each	other.	Or,	if	they	both	disliked	them	we	can
also	say	they're	similar	to	each	other,	right?	So,	we're	just	looking	at	the	similarity	score	of	these	two
users'	behavior	related	to	these	two	movies	in	this	movie	pair.

So,	along	comes	Mr.	Moustachy	Lumberjack	Hipster	Man	and	he	watches	The	Empire	Strikes	Back	and
he	lives	in	some	strange	world	where	he	watched	The	Empire	Strikes	Back,	but	had	no	idea	that	Star
Wars	the	first	movie	existed.

Well	that's	fine,	we	computed	a	relationship	between	The	Empire	Strikes	Back	and	Star	Wars	based	on
the	behavior	of	these	two	people,	so	we	know	that	these	two	movies	are	similar	to	each	other.	So,	given
that	Mr.	Hipster	Man	liked	The	Empire	Strikes	Back,	we	can	say	with	good	confidence	that	he	would	also
like	Star	Wars,	and	we	can	then	recommend	that	back	to	him	as	his	top	movie	recommendation.	Something
like	the	following	illustration:	



You	can	see	that	you	end	up	with	very	similar	results	in	the	end,	but	we've	kind	of	flipped	the	whole	thing
on	its	head.	So,	instead	of	focusing	the	system	on	relationships	between	people,	we're	focusing	them	on
relationships	between	items,	and	those	relationships	are	still	based	on	the	aggregate	behavior	of	all	the
people	that	watch	them.	But	fundamentally,	we're	looking	at	relationships	between	items	and	not
relationships	between	people.	Got	it?





Collaborative	filtering	using	Python
Alright,	so	let's	do	it!	We	have	some	Python	code	that	will	use	Pandas,	and	all	the	various	other	tools	at
our	disposal,	to	create	movie	recommendations	with	a	surprisingly	little	amount	of	code.

The	first	thing	we're	going	to	do	is	show	you	item-based	collaborative	filtering	in	practice.	So,	we'll
build	up	people	who	watched	also	watched	basically,	you	know,	people	who	rated	things	highly	also
rated	this	thing	highly,	so	building	up	these	movie	to	movie	relationships.	So,	we're	going	to	base	it	on
real	data	that	we	got	from	the	MovieLens	project.	So,	if	you	go	to	MovieLens.org,	there's	actually	an	open
movie	recommender	system	there,	where	people	can	rate	movies	and	get	recommendations	for	new
movies.

And,	they	make	all	the	underlying	data	publicly	available	for	researchers	like	us.	So,	we're	going	to	use
some	real	movie	ratings	data-it	is	a	little	bit	dated,	it's	like	10	years	old,	so	keep	that	in	mind,	but	it	is
real	behavior	data	that	we're	going	to	be	working	with	finally	here.	And,	we	will	use	that	to	compute
similarities	between	movies.	And,	that	data	in	and	of	itself	is	useful.	You	can	use	that	data	to	say	people
who	liked	also	liked.	So,	let's	say	I'm	looking	at	a	web	page	for	a	movie.	the	system	can	then	say:	if	you
liked	this	movie,	and	given	that	you're	looking	at	it	you're	probably	interested	in	it,	then	you	might
also	like	these	movies.	And	that's	a	form	of	a	recommender	system	right	there,	even	though	we	don't	even
know	who	you	are.

Now,	it	is	real-world	data,	so	we're	going	to	encounter	some	real-world	problems	with	it.	Our	initial	set
of	results	aren't	going	to	look	good,	so	we're	going	to	spend	a	little	bit	of	extra	time	trying	to	figure	out
why,	which	is	a	lot	of	what	you	spend	your	time	doing	as	a	data	scientist-correct	those	problems,	and	go
back	and	run	it	again	until	we	get	results	that	makes	sense.

And	finally,	we'll	actually	do	item-based	collaborative	filtering	in	its	entirety,	where	we	actually
recommend	movies	to	individuals	based	on	their	own	behavior.	So,	let's	do	this,	let's	get	started!





Finding	movie	similarities
Let's	apply	the	concept	of	item-based	collaborative	filtering.	To	start	with,	movie	similarities-figure	out
what	movies	are	similar	to	other	movies.	In	particular,	we'll	try	to	figure	out	what	movies	are	similar	to
Star	Wars,	based	on	user	rating	data,	and	we'll	see	what	we	get	out	of	it.	Let's	dive	in!

Okay	so,	let's	go	ahead	and	compute	the	first	half	of	item-based	collaborative	filtering,	which	is	finding
similarities	between	items.	Download	and	open	the	SimilarMovies.ipynb	file.

In	this	case,	we're	going	to	be	looking	at	similarities	between	movies,	based	on	user	behavior.	And,	we're
going	to	be	using	some	real	movie	rating	data	from	the	GroupLens	project.	GroupLens.org	provides	real
movie	ratings	data,	by	real	people	who	are	using	the	MovieLens.org	website	to	rate	movies	and	get
recommendations	back	for	new	movies	that	they	want	to	watch.

We	have	included	the	data	files	that	you	need	from	the	GroupLens	dataset	with	the	course	materials,	and
the	first	thing	we	need	to	do	is	import	those	into	a	Pandas	DataFrame,	and	we're	really	going	to	see	the
full	power	of	Pandas	in	this	example.	It's	pretty	cool	stuff!

http://MovieLens.org




Understanding	the	code
The	first	thing	we're	going	to	do	is	import	the	u.data	file	as	part	of	the	MovieLens	dataset,	and	that	is	a	tab-
delimited	file	that	contains	every	rating	in	the	dataset.

import	pandas	as	pd	

	

r_cols	=	['user_id',	'movie_id',	'rating']	

ratings	=	pd.read_csv('e:/sundog-consult/packt/datascience/ml-100k/u.data',		

																						sep='\\t',	names=r_cols,	usecols=range(3))	

Note	that	you'll	need	to	add	the	path	here	to	where	you	stored	the	downloaded	MovieLens	files	on	your
computer.	So,	the	way	that	this	works	is	even	though	we're	calling	read_csv	on	Pandas,	we	can	specify	a
different	separator	than	a	comma.	In	this	case,	it's	a	tab.

We're	basically	saying	take	the	first	three	columns	in	the	u.data	file,	and	import	it	into	a	new	DataFrame,
with	three	columns:	user_id,	movie_id,	and	rating.

What	we	end	up	with	here	is	a	DataFrame	that	has	a	row	for	every	user_id,	which	identifies	some	person,
and	then,	for	every	movie	they	rated,	we	have	the	movie_id,	which	is	some	numerical	shorthand	for	a	given
movie,	so	Star	Wars	might	be	movie	53	or	something,	and	their	rating,	you	know,	1	to	5	stars.	So,	we	have
here	a	database,	a	DataFrame,	of	every	user	and	every	movie	they	rated,	okay?

Now,	we	want	to	be	able	to	work	with	movie	titles,	so	we	can	interpret	these	results	more	intuitively,	so
we're	going	to	use	their	human-readable	names	instead.

If	you're	using	a	truly	massive	dataset,	you'd	save	that	to	the	end	because	you	want	to	be	working	with
numbers,	they're	more	compact,	for	as	long	as	possible.	For	the	purpose	of	example	and	teaching,	though,
we'll	keep	the	titles	around	so	you	can	see	what's	going	on.

m_cols	=	['movie_id',	'title']	

movies	=	pd.read_csv('e:/sundog-consult/packt/datascience/ml-100k/u.item',	

																					sep='|',	names=m_cols,	usecols=range(2))	

There's	a	separate	data	file	with	the	MovieLens	dataset	called	u.item,	and	it	is	pipe-delimited,	and	the	first
two	columns	that	we	import	will	be	the	movie_id	and	the	title	of	that	movie.	So,	now	we	have	two
DataFrames:	r_cols	has	all	the	user	ratings	and	m_cols	has	all	the	titles	for	every	movie_id.	We	can	then	use
the	magical	merge	function	in	Pandas	to	mush	it	all	together.

ratings	=	pd.merge(movies,	ratings)	

Let's	add	a	ratings.head()	command	and	then	run	those	cells.	What	we	end	up	with	is	something	like	the
following	table.	That	was	pretty	quick!



We	end	up	with	a	new	DataFrame	that	contains	the	user_id	and	rating	for	each	movie	that	a	user	rated,	and
we	have	both	the	movie_id	and	the	title	that	we	can	read	and	see	what	it	really	is.	So,	the	way	to	read	this	is
user_id	number	308	rated	the	Toy	Story	(1995)	movie	4	stars,	user_id	number	287	rated	the	Toy	Story	(1995)	movie
5	stars,	and	so	on	and	so	forth.	And,	if	we	were	to	keep	looking	at	more	and	more	of	this	DataFrame,	we'd
see	different	ratings	for	different	movies	as	we	go	through	it.

Now	the	real	magic	of	Pandas	comes	in.	So,	what	we	really	want	is	to	look	at	relationships	between
movies	based	on	all	the	users	that	watched	each	pair	of	movies,	so	we	need,	at	the	end,	a	matrix	of	every
movie,	and	every	user,	and	all	the	ratings	that	every	user	gave	to	every	movie.	The	pivot_table	command	in
Pandas	can	do	that	for	us.	It	can	basically	construct	a	new	table	from	a	given	DataFrame,	pretty	much	any
way	that	you	want	it.	For	this,	we	can	use	the	following	code:

movieRatings	=	ratings.pivot_table(index=['user_id'],

																																			columns=['title'],values='rating')	

movieRatings.head()	

So,	what	we're	saying	with	this	code	is-take	our	ratings	DataFrame	and	create	a	new	DataFrame	called
movieRatings	and	we	want	the	index	of	it	to	be	the	user	IDs,	so	we'll	have	a	row	for	every	user_id,	and	we're
going	to	have	every	column	be	the	movie	title.	So,	we're	going	to	have	a	column	for	every	title	that	we
encounter	in	that	DataFrame,	and	each	cell	will	contain	the	rating	value,	if	it	exists.	So,	let's	go	ahead	and
run	it.

And,	we	end	up	with	a	new	DataFrame	that	looks	like	the	following	table:

It's	kind	of	amazing	how	that	just	put	it	all	together	for	us.	Now,	you'll	see	some	NaN	values,	which	stands



for	Not	a	Number,	and	its	just	how	Pandas	indicates	a	missing	value.	So,	the	way	to	interpret	this	is,
user_id	number	1,	for	example,	did	not	watch	the	movie	1-900	(1994),	but	user_id	number	1	did	watch	101
Dalmatians	(1996)	and	rated	it	2	stars.	The	user_id	number	1	also	watched	12	Angry	Men	(1957)	and	rated	it	5	stars,
but	did	not	watch	the	movie	2	Days	in	the	Valley	(1996),	for	example,	okay?	So,	what	we	end	up	with	here	is
a	sparse	matrix	basically,	that	contains	every	user,	and	every	movie,	and	at	every	intersection	where	a
user	rated	a	movie	there's	a	rating	value.

So,	you	can	see	now,	we	can	very	easily	extract	vectors	of	every	movie	that	our	user	watched,	and	we	can
also	extract	vectors	of	every	user	that	rated	a	given	movie,	which	is	what	we	want.	So,	that's	useful	for
both	user-based	and	item-based	collaborative	filtering,	right?	If	I	wanted	to	find	relationships	between
users,	I	could	look	at	correlations	between	these	user	rows,	but	if	I	want	to	find	correlations	between
movies,	for	item-based	collaborative	filtering,	I	can	look	at	correlations	between	columns	based	on	the
user	behavior.	So,	this	is	where	the	real	flipping	things	on	its	head	for	user	versus	item-based
similarities	comes	into	play.

Now,	we're	going	with	item-based	collaborative	filtering,	so	we	want	to	extract	columns,	to	do	this	let's
run	the	following	code:

starWarsRatings	=	movieRatings['Star	Wars	(1977)']	

starWarsRatings.head()	

Now,	with	the	help	of	that,	let's	go	ahead	and	extract	all	the	users	who	rated	Star	Wars	(1977):

And,	we	can	see	most	people	have,	in	fact,	watched	and	rated	Star	Wars	(1977)	and	everyone	liked	it,	at
least	in	this	little	sample	that	we	took	from	the	head	of	the	DataFrame.	So,	we	end	up	with	a	resulting	set
of	user	IDs	and	their	ratings	for	Star	Wars	(1977).	The	user	ID	3	did	not	rate	Star	Wars	(1977)	so	we	have	a	NaN
value,	indicating	a	missing	value	there,	but	that's	okay.	We	want	to	make	sure	that	we	preserve	those
missing	values	so	we	can	directly	compare	columns	from	different	movies.	So,	how	do	we	do	that?





The	corrwith	function
Well,	Pandas	keeps	making	it	easy	for	us,	and	has	a	corrwith	function	that	you	can	see	in	the	following	code
that	we	can	use:

similarMovies	=	movieRatings.corrwith(starWarsRatings)	

similarMovies	=	similarMovies.dropna()	

df	=	pd.DataFrame(similarMovies)	

df.head(10)	

That	code	will	go	ahead	and	correlate	a	given	column	with	every	other	column	in	the	DataFrame,	and
compute	the	correlation	scores	and	give	that	back	to	us.	So,	what	we're	doing	here	is	using	corrwith	on	the
entire	movieRatings	DataFrame,	that's	that	entire	matrix	of	user	movie	ratings,	correlating	it	with	just	the
starWarsRatings	column,	and	then	dropping	all	of	the	missing	results	with	dropna.	So,	that	just	leaves	us	with
items	that	had	a	correlation,	where	there	was	more	than	one	person	that	viewed	it,	and	we	create	a	new
DataFrame	based	on	those	results	and	then	display	the	top	10	results.	So	again,	just	to	recap:

1.	 We're	going	to	build	the	correlation	score	between	Star	Wars	and	every	other	movie.
2.	 Drop	all	the	NaN	values,	so	that	we	only	have	movie	similarities	that	actually	exist,	where	more	than

one	person	rated	it.
3.	 And,	we're	going	to	construct	a	new	DataFrame	from	the	results	and	look	at	the	top	10	results.

And	here	we	are	with	the	results	shown	in	the	following	screenshot:

We	ended	up	with	this	result	of	correlation	scores	between	each	individual	movie	for	Star	Wars	and	we
can	see,	for	example,	a	surprisingly	high	correlation	score	with	the	movie	'Til	There	Was	You	(1997),	a
negative	correlation	with	the	movie	1-900	(1994),	and	a	very	weak	correlation	with	101	Dalmatians	(1996).

Now,	all	we	should	have	to	do	is	sort	this	by	similarity	score,	and	we	should	have	the	top	movie
similarities	for	Star	Wars,	right?	Let's	go	ahead	and	do	that.

similarMovies.sort_values(ascending=False)	

Just	call	sort_values	on	the	resulting	DataFrame,	again	Pandas	makes	it	really	easy,	and	we	can	say



ascending=False,	to	actually	get	it	sorted	in	reverse	order	by	correlation	score.	So,	let's	do	that:

Okay,	so	Star	Wars	(1977)	came	out	pretty	close	to	top,	because	it	is	similar	to	itself,	but	what's	all	this	other
stuff?	What	the	heck?	We	can	see	in	the	preceding	output,	some	movies	such	as:	Full	Speed	(1996),	Man	of	the
Year	(1995),	The	Outlaw	(1943).	These	are	all,	you	know,	fairly	obscure	movies,	that	most	of	them	I've	never
even	heard	of,	and	yet	they	have	perfect	correlations	with	Star	Wars.	That's	kinda	weird!	So,	obviously
we're	doing	something	wrong	here.	What	could	it	be?

Well,	it	turns	out	there's	a	perfectly	reasonable	explanation,	and	this	is	a	good	lesson	in	why	you	always
need	to	examine	your	results	when	you're	done	with	any	sort	of	data	science	task-question	the	results,
because	often	there's	something	you	missed,	there	might	be	something	you	need	to	clean	in	your	data,	there
might	be	something	you	did	wrong.	But	you	should	also	always	look	skeptically	at	your	results,	don't	just
take	them	on	faith,	okay?	If	you	do	so,	you're	going	to	get	in	trouble,	because	if	I	were	to	actually	present
these	as	recommendations	to	people	who	liked	Star	Wars,	I	would	get	fired.	Don't	get	fired!	Pay	attention
to	your	results!	So,	let's	dive	into	what	went	wrong	in	our	next	section.





Improving	the	results	of	movie	similarities
Let's	figure	out	what	went	wrong	with	our	movie	similarities	there.	We	went	through	all	this	exciting	work
to	compute	correlation	scores	between	movies	based	on	their	user	ratings	vectors,	and	the	results	we	got
kind	of	sucked.	So,	just	to	remind	you,	we	looked	for	movies	that	are	similar	to	Star	Wars	using	that
technique,	and	we	ended	up	with	a	bunch	of	weird	recommendations	at	the	top	that	had	a	perfect
correlation.

And,	most	of	them	were	very	obscure	movies.	So,	what	do	you	think	might	be	going	on	there?	Well,	one
thing	that	might	make	sense	is,	let's	say	we	have	a	lot	of	people	watch	Star	Wars	and	some	other	obscure
film.	We'd	end	up	with	a	good	correlation	between	these	two	movies	because	they're	tied	together	by	Star
Wars,	but	at	the	end	of	the	day,	do	we	really	want	to	base	our	recommendations	on	the	behavior	of	one	or
two	people	that	watch	some	obscure	movie?

Probably	not!	I	mean	yes,	the	two	people	in	the	world,	or	whatever	it	is,	that	watch	the	movie	Full	Speed,
and	both	liked	it	in	addition	to	Star	Wars,	maybe	that	is	a	good	recommendation	for	them,	but	it's	probably
not	a	good	recommendation	for	the	rest	of	the	world.	We	need	to	have	some	sort	of	confidence	level	in
our	similarities	by	enforcing	a	minimum	boundary	of	how	many	people	watched	a	given	movie.	We	can't
make	a	judgment	that	a	given	movie	is	good	just	based	on	the	behavior	of	one	or	two	people.

So,	let's	try	to	put	that	insight	into	action	using	the	following	code:

import	numpy	as	np	

movieStats	=	ratings.groupby('title').agg({'rating':	[np.size,	np.mean]})	

movieStats.head()	

What	we're	going	to	do	is	try	to	identify	the	movies	that	weren't	actually	rated	by	many	people	and	we'll
just	throw	them	out	and	see	what	we	get.	So,	to	do	that	we're	going	to	take	our	original	ratings	DataFrame
and	we're	going	to	say	groupby('title'),	again	Pandas	has	all	sorts	of	magic	in	it.	And,	this	will	basically
construct	a	new	DataFrame	that	aggregates	together	all	the	rows	for	a	given	title	into	one	row.

We	can	say	that	we	want	to	aggregate	specifically	on	the	rating,	and	we	want	to	show	both	the	size,	the
number	of	ratings	for	each	movie,	and	the	mean	average	score,	the	mean	rating	for	that	movie.	So,	when
we	do	that,	we	end	up	with	something	like	the	following:



This	is	telling	us,	for	example,	for	the	movie	101	Dalmatians	(1996),	109	people	rated	that	movie	and	their
average	rating	was	2.9	stars,	so	not	that	great	of	a	score	really!	So,	if	we	just	eyeball	this	data,	we	can	say
okay	well,	movies	that	I	consider	obscure,	like	187	(1997),	had	41	ratings,	but	101	Dalmatians	(1996),	I've	heard
of	that,	you	know	12	Angry	Men	(1957),	I've	heard	of	that.	It	seems	like	there's	sort	of	a	natural	cutoff	value	at
around	100	ratings,	where	maybe	that's	the	magic	value	where	things	start	to	make	sense.

Let's	go	ahead	and	get	rid	of	movies	rated	by	fewer	than	100	people,	and	yes,	you	know	I'm	kind	of	doing
this	intuitively	at	this	point.	As	we'll	talk	about	later,	there	are	more	principled	ways	of	doing	this,	where
you	could	actually	experiment	and	do	train/test	experiments	on	different	threshold	values,	to	find	the	one
that	actually	performs	the	best.	But	initially,	let's	just	use	our	common	sense	and	filter	out	movies	that
were	rated	by	fewer	than	100	people.	Again,	Pandas	makes	that	really	easy	to	do.	Let's	figure	it	out	with
the	following	example:

popularMovies	=	movieStats['rating']['size']	>=	100	

movieStats[popularMovies].sort_values([('rating',	'mean')],	ascending=False)[:15]	

We	can	just	say	popularMovies,	a	new	DataFrame,	is	going	to	be	constructed	by	looking	at	movieStats	and
we're	going	to	only	take	rows	where	the	rating	size	is	greater	than	or	equal	to	100,	and	I'm	then	going	to
sort	that	by	mean	rating,	just	for	fun,	to	see	the	top	rated,	widely	watched	movies.

What	we	have	here	is	a	list	of	movies	that	were	rated	by	more	than	100	people,	sorted	by	their	average
rating	score,	and	this	in	itself	is	a	recommender	system.	These	are	highly-rated	popular	movies.	A	Close
Shave	(1995),	apparently,	was	a	really	good	movie	and	a	lot	of	people	watched	it	and	they	really	liked	it.

So	again,	this	is	a	very	old	dataset,	from	the	late	90s,	so	even	though	you	might	not	be	familiar	with	the
film	A	Close	Shave	(1995),	it	might	be	worth	going	back	and	rediscovering	it;	add	it	to	your	Netflix!
Schindler's	List	(1993)	not	a	big	surprise	there,	that	comes	up	on	the	top	of	most	top	movies	lists.	The	Wrong
Trousers	(1993),	another	example	of	an	obscure	film	that	apparently	was	really	good	and	was	also	pretty
popular.	So,	some	interesting	discoveries	there	already,	just	by	doing	that.



Things	look	a	little	bit	better	now,	so	let's	go	ahead	and	basically	make	our	new	DataFrame	of	Star	Wars
recommendations,	movies	similar	to	Star	Wars,	where	we	only	base	it	on	movies	that	appear	in	this	new
DataFrame.	So,	we're	going	to	use	the	join	operation,	to	go	ahead	and	join	our	original	similarMovies
DataFrame	to	this	new	DataFrame	of	only	movies	that	have	greater	than	100	ratings,	okay?

df	=	movieStats[popularMovies].join(pd.DataFrame(similarMovies,	columns=['similarity']))	

df.head()	

In	this	code,	we	create	a	new	DataFrame	based	on	similarMovies	where	we	extract	the	similarity	column,
join	that	with	our	movieStats	DataFrame,	which	is	our	popularMovies	DataFrame,	and	we	look	at	the	combined
results.	And,	there	we	go	with	that	output!

Now	we	have,	restricted	only	to	movies	that	are	rated	by	more	than	100	people,	the	similarity	score	to
Star	Wars.	So,	now	all	we	need	to	do	is	sort	that	using	the	following	code:

df.sort_values(['similarity'],	ascending=False)[:15]	

Here,	we're	reverse	sorting	it	and	we're	just	going	to	take	a	look	at	the	first	15	results.	If	you	run	that	now,
you	should	see	the	following:

This	is	starting	to	look	a	little	bit	better!	So,	Star	Wars	(1977)	comes	out	on	top	because	it's	similar	to	itself,
The	Empire	Strikes	Back	(1980)	is	number	2,	Return	of	the	Jedi	(1983)	is	number	3,	Raiders	of	the	Lost	Ark	(1981),



number	4.	You	know,	it's	still	not	perfect,	but	these	make	a	lot	more	sense,	right?	So,	you	would	expect	the
three	Star	Wars	films	from	the	original	trilogy	to	be	similar	to	each	other,	this	data	goes	back	to	before	the
next	three	films,	and	Raiders	of	the	Lost	Ark	(1981)	is	also	a	very	similar	movie	to	Star	Wars	in	style,	and	it
comes	out	as	number	4.	So,	I'm	starting	to	feel	a	little	bit	better	about	these	results.	There's	still	room	for
improvement,	but	hey!	We	got	some	results	that	make	sense,	whoo-hoo!

Now,	ideally,	we'd	also	filter	out	Star	Wars,	you	don't	want	to	be	looking	at	similarities	to	the	movie	itself
that	you	started	from,	but	we'll	worry	about	that	later!	So,	if	you	want	to	play	with	this	a	little	bit	more,
like	I	said	100	was	sort	of	an	arbitrary	cutoff	for	the	minimum	number	of	ratings.	If	you	do	want	to
experiment	with	different	cutoff	values,	I	encourage	you	to	go	back	and	do	so.	See	what	that	does	to	the
results.	You	know,	you	can	see	in	the	preceding	table	that	the	results	that	we	really	like	actually	had	much
more	than	100	ratings	in	common.	So,	we	end	up	with	Austin	Powers:	International	Man	of	Mystery	(1997)
coming	in	there	pretty	high	with	only	130	ratings	so	maybe	100	isn't	high	enough!	Pinocchio	(1940)	snuck	in	at
101,	not	very	similar	to	Star	Wars,	so,	you	might	want	to	consider	an	even	higher	threshold	there	and	see
what	it	does.

Please	keep	in	mind	too,	this	is	a	very	small,	limited	dataset	that	we	used	for
experimentation	purposes,	and	it's	based	on	very	old	data,	so	you're	only	going	to	see
older	movies.	So,	interpreting	these	results	intuitively	might	be	a	little	bit	challenging	as
a	result,	but	not	bad	results.

Now	let's	move	on	and	actually	do	full-blown	item-based	collaborative	filtering	where	we	recommend
movies	to	people	using	a	more	complete	system,	we'll	do	that	next.





Making	movie	recommendations	to	people
Okay,	let's	actually	build	a	full-blown	recommender	system	that	can	look	at	all	the	behavior	information
of	everybody	in	the	system,	and	what	movies	they	rated,	and	use	that	to	actually	produce	the	best
recommendation	movies	for	any	given	user	in	our	dataset.	Kind	of	amazing	and	you'll	be	surprised	how
simple	it	is.	Let's	go!

Let's	begin	using	the	ItemBasedCF.ipynb	file	and	let's	start	off	by	importing	the	MovieLens	dataset	that	we
have.	Again,	we're	using	a	subset	of	it	that	just	contains	100,000	ratings	for	now.	But,	there	are	larger
datasets	you	can	get	from	GroupLens.org-up	to	millions	of	ratings;	if	you're	so	inclined.	Keep	in	mind
though,	when	you	start	to	deal	with	that	really	big	data,	you're	going	to	be	pushing	the	limits	of	what	you
can	do	in	a	single	machine	and	what	Pandas	can	handle.	Without	further	ado,	here's	the	first	block	of	code:

import	pandas	as	pd	

	

r_cols	=	['user_id',	'movie_id',	'rating']	

ratings	=	pd.read_csv('e:/sundog-consult/packt/datascience/ml-100k/u.data',						

																						sep='\t',	names=r_cols,	usecols=range(3))	

	

m_cols	=	['movie_id',	'title']	

movies	=	pd.read_csv('e:/sundog-consult/packt/datascience/ml-100k/u.item',	

																					sep='|',	names=m_cols,	usecols=range(2))	

	

ratings	=	pd.merge(movies,	ratings)	

	

ratings.head()	

Just	like	earlier,	we're	going	to	import	the	u.data	file	that	contains	all	the	individual	ratings	for	every	user
and	what	movie	they	rated,	and	then	we're	going	to	tie	that	together	with	the	movie	titles,	so	we	don't	have
to	just	work	with	numerical	movie	IDs.	Go	ahead	and	hit	the	run	cell	button,	and	we	end	up	with	the
following	DataFrame.

The	way	to	read	this	is,	for	example,	user_id	number	308	rated	Toy	Story	(1995)	a	4	star,	and	user_id	number	66
rated	Toy	Story	(1995)	a	3	star.	And,	this	will	contain	every	rating,	for	every	user,	for	every	movie.

And	again,	just	like	earlier,	we	use	the	wonderful	pivot_table	command	in	Pandas	to	construct	a	new
DataFrame	based	on	the	information:

userRatings	=	ratings.pivot_table(index=['user_id'],

																																		columns=['title'],values='rating')	

userRatings.head()	

Here,	each	row	is	the	user_id,	the	columns	are	made	up	of	all	the	unique	movie	titles	in	my	dataset,	and
each	cell	contains	a	rating:



What	we	end	up	with	is	this	incredibly	useful	matrix	shown	in	the	preceding	output,	that	contains	users	for
every	row	and	movies	for	every	column.	And	we	have	basically	every	user	rating	for	every	movie	in	this
matrix.	So,	user_id	number	1,	for	example,	gave	101	Dalmatians	(1996)	a	2-star	rating.	And,	again	all	these	NaN
values	represent	missing	data.	So,	that	just	indicates,	for	example,	user_id	number	1	did	not	rate	the	movie
1-900	(1994).

Again,	it's	a	very	useful	matrix	to	have.	If	we	were	doing	user-based	collaborative	filtering,	we	could
compute	correlations	between	each	individual	user	rating	vector	to	find	similar	users.	Since	we're	doing
item-based	collaborative	filtering,	we're	more	interested	in	relationships	between	the	columns.	So,	for
example,	doing	a	correlation	score	between	any	two	columns,	which	will	give	us	a	correlation	score	for	a
given	movie	pair.	So,	how	do	we	do	that?	It	turns	out	that	Pandas	makes	that	incredibly	easy	to	do	as
well.

It	has	a	built-in	corr	function	that	will	actually	compute	the	correlation	score	for	every	column	pair	found
in	the	entire	matrix-it's	almost	like	they	were	thinking	of	us.

corrMatrix	=	userRatings.corr()	

corrMatrix.head()	

Let's	go	ahead	and	run	the	preceding	code.	It's	a	fairly	computationally	expensive	thing	to	do,	so	it	will
take	a	moment	to	actually	come	back	with	a	result.	But,	there	we	have	it!



So,	what	do	we	have	in	the	preceding	output?	We	have	here	a	new	DataFrame	where	every	movie	is	on
the	row,	and	in	the	column.	So,	we	can	look	at	the	intersection	of	any	two	given	movies	and	find	their
correlation	score	to	each	other	based	on	this	userRatings	data	that	we	had	up	here	originally.	How	cool	is
that?	For	example,	the	movie	101	Dalmatians	(1996)	is	perfectly	correlated	with	itself	of	course,	because	it
has	identical	user	rating	vectors.	But,	if	you	look	at	101	Dalmatians	(1996)	movie's	relationship	to	the	movie
12	Angry	Men	(1957),	it's	a	much	lower	correlation	score	because	those	movies	are	rather	dissimilar,	makes
sense,	right?

I	have	this	wonderful	matrix	now	that	will	give	me	the	similarity	score	of	any	two	movies	to	each	other.
It's	kind	of	amazing,	and	very	useful	for	what	we're	going	to	be	doing.	Now	just	like	earlier,	we	have	to
deal	with	spurious	results.	So,	I	don't	want	to	be	looking	at	relationships	that	are	based	on	a	small	amount
of	behavior	information.

It	turns	out	that	the	Pandas	corr	function	actually	has	a	few	parameters	you	can	give	it.	One	is	the	actual
correlation	score	method	that	you	want	to	use,	so	I'm	going	to	say	use	pearson	correlation.

corrMatrix	=	userRatings.corr(method='pearson',	min_periods=100)	

corrMatrix.head()	

You'll	notice	that	it	also	has	a	min_periods	parameter	you	can	give	it,	and	that	basically	says	I	only	want	you
to	consider	correlation	scores	that	are	backed	up	by	at	least,	in	this	example,	100	people	that	rated	both
movies.	Running	that	will	get	rid	of	the	spurious	relationships	that	are	based	on	just	a	handful	of	people.
The	following	is	the	matrix	that	we	get	after	running	the	code:



It's	a	little	bit	different	to	what	we	did	in	the	item	similarities	exercise	where	we	just	threw	out	any	movie
that	was	rated	by	less	than	100	people.	What	we're	doing	here,	is	throwing	out	movie	similarities	where
less	than	100	people	rated	both	of	those	movies,	okay?	So,	you	can	see	in	the	preceding	matrix	that	we
have	a	lot	more	NaN	values.

In	fact,	even	movies	that	are	similar	to	themselves	get	thrown	out,	so	for	example,	the	movie	1-900	(1994)
was,	presumably,	watched	by	fewer	than	100	people	so	it	just	gets	tossed	entirely.	The	movie,	101
Dalmatians	(1996)	however,	survives	with	a	correlation	score	of	1,	and	there	are	actually	no	movies	in	this
little	sample	of	the	dataset	that	are	different	from	each	other	that	had	100	people	in	common	that	watched
both.	But,	there	are	enough	movies	that	survive	to	get	meaningful	results.





Understanding	movie	recommendations	with	an
example
So,	what	we	do	with	this	data?	Well,	what	we	want	to	do	is	recommend	movies	for	people.	The	way	we
do	that	is	we	look	at	all	the	ratings	for	a	given	person,	find	movies	similar	to	the	stuff	that	they	rated,	and
those	are	candidates	for	recommendations	to	that	person.

Let's	start	by	creating	a	fake	person	to	create	recommendations	for.	I've	actually	already	added	a	fake	user
by	hand,	ID	number	0,	to	the	MovieLens	dataset	that	we're	processing.	You	can	see	that	user	with	the
following	code:

myRatings	=	userRatings.loc[0].dropna()	

myRatings	

This	gives	the	following	output:

That	kind	of	represents	someone	like	me,	who	loved	Star	Wars	and	The	Empire	Strikes	Back,	but	hated
the	movie	Gone	with	the	Wind.	So,	this	represents	someone	who	really	loves	Star	Wars,	but	does	not	like
old	style,	romantic	dramas,	okay?	So,	I	gave	a	rating	of	5	star	to	The	Empire	Strikes	Back	(1980)	and	Star	Wars
(1977),	and	a	rating	of	1	star	to	Gone	with	the	Wind	(1939).	So,	I'm	going	to	try	to	find	recommendations	for	this
fictitious	user.

So,	how	do	I	do	that?	Well,	let's	start	by	creating	a	series	called	simCandidates	and	I'm	going	to	go	through
every	movie	that	I	rated.

simCandidates	=	pd.Series()	

for	i	in	range(0,	len(myRatings.index)):	

				print	"Adding	sims	for	"	+	myRatings.index[i]	+	"..."	

				#	Retrieve	similar	movies	to	this	one	that	I	rated	

				sims	=	corrMatrix[myRatings.index[i]].dropna()	

				#	Now	scale	its	similarity	by	how	well	I	rated	this	movie	

				sims	=	sims.map(lambda	x:	x	*	myRatings[i])	

				#	Add	the	score	to	the	list	of	similarity	candidates	

				simCandidates	=	simCandidates.append(sims)	

					

#Glance	at	our	results	so	far:	

print	"sorting..."	

simCandidates.sort_values(inplace	=	True,	ascending	=	False)	

print	simCandidates.head(10)	

For	i	in	range	0	through	the	number	of	ratings	that	I	have	in	myRatings,	I	am	going	to	add	up	similar	movies
to	the	ones	that	I	rated.	So,	I'm	going	to	take	that	corrMatrix	DataFrame,	that	magical	one	that	has	all	of	the
movie	similarities,	and	I	am	going	to	create	a	correlation	matrix	with	myRatings,	drop	any	missing	values,
and	then	I	am	going	to	scale	that	resulting	correlation	score	by	how	well	I	rated	that	movie.



So,	the	idea	here	is	I'm	going	to	go	through	all	the	similarities	for	The	Empire	Strikes	Back,	for	example,
and	I	will	scale	it	all	by	5,	because	I	really	liked	The	Empire	Strikes	Back.	But,	when	I	go	through	and	get
the	similarities	for	Gone	with	the	Wind,	I'm	only	going	to	scale	those	by	1,	because	I	did	not	like	Gone
with	the	Wind.	So,	this	will	give	more	strength	to	movies	that	are	similar	to	movies	that	I	liked,	and	less
strength	to	movies	that	are	similar	to	movies	that	I	did	not	like,	okay?

So,	I	just	go	through	and	build	up	this	list	of	similarity	candidates,	recommendation	candidates	if	you	will,
sort	the	results	and	print	them	out.	Let's	see	what	we	get:

Hey,	those	don't	look	too	bad,	right?	So,	obviously	The	Empire	Strikes	Back	(1980)	and	Star	Wars	(1977)	come
out	on	top,	because	I	like	those	movies	explicitly,	I	already	watched	them	and	rated	them.	But,	bubbling
up	to	the	top	of	the	list	is	Return	of	the	Jedi	(1983),	which	we	would	expect	and	Raiders	of	the	Lost	Ark	(1981).

Let's	start	to	refine	these	results	a	little	bit	more.	We're	seeing	that	we're	getting	duplicate	values	back.	If
we	have	a	movie	that	was	similar	to	more	than	one	movie	that	I	rated,	it	will	come	back	more	than	once	in
the	results,	so	we	want	to	combine	those	together.	If	I	do	in	fact	have	the	same	movie,	maybe	that	should
get	added	up	together	into	a	combined,	stronger	recommendation	score.	Return	of	the	Jedi,	for	example,
was	similar	to	both	Star	Wars	and	The	Empire	Strikes	Back.	How	would	we	do	that?





Using	the	groupby	command	to	combine	rows
We'll	go	ahead	and	explore	that.	We're	going	to	use	the	groupby	command	again	to	group	together	all	of	the
rows	that	are	for	the	same	movie.	Next,	we	will	sum	up	their	correlation	score	and	look	at	the	results:

simCandidates	=	simCandidates.groupby(simCandidates.index).sum()	

simCandidates.sort_values(inplace	=	True,	ascending	=	False)	

simCandidates.head(10)	

Following	is	the	result:

Hey,	this	is	looking	really	good!

So	Return	of	the	Jedi	(1983)	comes	out	way	on	top,	as	it	should,	with	a	score	of	7,	Raiders	of	the	Lost	Ark
(1981)	a	close	second	at	5,	and	then	we	start	to	get	to	Indiana	Jones	and	the	Last	Crusade	(1989),	and	some	more
movies,	The	Bridge	on	the	River	Kwai	(1957),	Back	to	the	Future	(1985),The	Sting	(1973).	These	are	all	movies	that	I
would	actually	enjoy	watching!	You	know,	I	actually	do	like	old-school	Disney	movies	too,	so	Cinderella
(1950)	isn't	as	crazy	as	it	might	seem.

The	last	thing	we	need	to	do	is	filter	out	the	movies	that	I've	already	rated,	because	it	doesn't	make	sense
to	recommend	movies	you've	already	seen.





Removing	entries	with	the	drop	command
So,	I	can	quickly	drop	any	rows	that	happen	to	be	in	my	original	ratings	series	using	the	following	code:

filteredSims	=	simCandidates.drop(myRatings.index)	

filteredSims.head(10)	

Running	that	will	let	me	see	the	final	top	10	results:

And	there	we	have	it!	Return	of	the	Jedi	(1983),	Raiders	of	the	Lost	Ark	(1981),	Indiana	Jones	and	the	Last	Crusade
(1989),	all	the	top	results	for	my	fictitious	user,	and	they	all	make	sense.	I'm	seeing	a	few	family-friendly
films,	you	know,	Cinderella	(1950),	The	Wizard	of	Oz	(1939),	Dumbo	(1941),	creeping	in,	probably	based	on	the
presence	of	Gone	with	the	Wind	in	there,	even	though	it	was	weighted	downward	it's	still	in	there,	and
still	being	counted.	And,	there	we	have	our	results,	so.	There	you	have	it!	Pretty	cool!

We	have	actually	generated	recommendations	for	a	given	user	and	we	could	do	that	for	any	user	in	our
entire	DataFrame.	So,	go	ahead	and	play	with	that	if	you	want	to.	I	also	want	to	talk	about	how	you	can
actually	get	your	hands	dirty	a	little	bit	more,	and	play	with	these	results;	try	to	improve	upon	them.

There's	a	bit	of	an	art	to	this,	you	know,	you	need	to	keep	iterating	and	trying	different	ideas	and	different
techniques	until	you	get	better	and	better	results,	and	you	can	do	this	pretty	much	forever.	I	mean,	I	made	a
whole	career	out	of	it.	So,	I	don't	expect	you	to	spend	the	next,	you	know,	10	years	trying	to	refine	this	like
I	did,	but	there	are	some	simple	things	you	can	do,	so	let's	talk	about	that.





Improving	the	recommendation	results
As	an	exercise,	I	want	to	challenge	you	to	go	and	make	those	recommendations	even	better.	So,	let's	talk
about	some	ideas	I	have,	and	maybe	you'll	have	some	of	your	own	too	that	you	can	actually	try	out	and
experiment	with;	get	your	hands	dirty,	and	try	to	make	better	movie	recommendations.

Okay,	there's	a	lot	of	room	for	improvement	still	on	these	recommendation	results.	There's	a	lot	of
decisions	we	made	about	how	to	weigh	different	recommendation	results	based	on	your	rating	of	that	item
that	it	came	from,	or	what	threshold	you	want	to	pick	for	the	minimum	number	of	people	that	rated	two
given	movies.	So,	there's	a	lot	of	things	you	can	tweak,	a	lot	of	different	algorithms	you	can	try,	and	you
can	have	a	lot	of	fun	with	trying	to	make	better	movie	recommendations	out	of	the	system.	So,	if	you're
feeling	up	to	it,	I'm	challenging	you	to	go	and	do	just	that!

Here	are	some	ideas	on	how	you	might	actually	try	to	improve	upon	the	results	in	this	chapter.	First,	you
can	just	go	ahead	and	play	with	the	ItembasedCF.ipynb	file	and	tinker	with	it.	So,	for	example,	we	saw	that
the	correlation	method	actually	had	some	parameters	for	the	correlation	computation,	we	used	Pearson	in
our	example,	but	there	are	other	ones	you	can	look	up	and	try	out,	see	what	it	does	to	your	results.	We
used	a	minimum	period	value	of	100,	maybe	that's	too	high,	maybe	it's	too	low;	we	just	kind	of	picked	it
arbitrarily.	What	happens	if	you	play	with	that	value?	If	you	were	to	lower	that	for	example,	I	would
expect	you	to	see	some	new	movies	maybe	you've	never	heard	of,	but	might	still	be	a	good
recommendation	for	that	person.	Or,	if	you	were	to	raise	it	higher,	you	would	see,	you	know	nothing	but
blockbusters.

Sometimes	you	have	to	think	about	what	the	result	is	that	you	want	out	of	a	recommender	system.	Is	there	a
good	balance	to	be	had	between	showing	people	movies	that	they've	heard	of	and	movies	that	they	haven't
heard	of?	How	important	is	discovery	of	new	movies	to	these	people	versus	having	confidence	in	the
recommender	system	by	seeing	a	lot	of	movies	that	they	have	heard	of?	So	again,	there's	sort	of	an	art	to
that.

We	can	also	improve	upon	the	fact	that	we	saw	a	lot	of	movies	in	the	results	that	were	similar	to	Gone
with	the	Wind,	even	though	I	didn't	like	Gone	with	the	Wind.	You	know	we	weighted	those	results	lower
than	similarities	to	movies	that	I	enjoyed,	but	maybe	those	movies	should	actually	be	penalized.	If	I	hated
Gone	with	the	Wind	that	much,	maybe	similarities	to	Gone	with	the	Wind,	like	The	Wizard	of	Oz,	should
actually	be	penalized	and,	you	know	lowered	in	their	score	instead	of	raised	at	all.

That's	another	simple	modification	you	can	make	and	play	around	with.	There	are	probably	some	outliers
in	our	user	rating	dataset,	what	if	I	were	to	throw	away	people	that	rated	some	ridiculous	number	of
movies?	Maybe	they're	skewing	everything.	You	could	actually	try	to	identify	those	users	and	throw	them
out,	as	another	idea.	And,	if	you	really	want	a	big	project,	if	you	really	want	to	sink	your	teeth	into	this
stuff,	you	could	actually	evaluate	the	results	of	this	recommender	engine	by	using	the	techniques	of
train/test.	So,	what	if	instead	of	having	an	arbitrary	recommendation	score	that	sums	up	the	correlation
scores	of	each	individual	movie,	actually	scale	that	down	to	a	predicted	rating	for	each	given	movie.

If	the	output	of	my	recommender	system	were	a	movie	and	my	predicted	rating	for	that	movie,	in	a
train/test	system	I	could	actually	try	to	figure	out	how	well	do	I	predict	movies	that	the	user	has	in	fact



watched	and	rated	before?	Okay?	So,	I	could	set	aside	some	of	the	ratings	data	and	see	how	well	my
recommender	system	is	able	to	predict	the	user's	ratings	for	those	movies.	And,	that	would	be	a
quantitative	and	principled	way	to	measure	the	error	of	this	recommender	engine.	But	again,	there's	a	little
bit	more	of	an	art	than	a	science	to	this.	Even	though	the	Netflix	prize	actually	used	that	error	metric,
called	root-mean-square	error	is	what	they	used	in	particular,	is	that	really	a	measure	of	a	good
recommender	system?

Basically,	you're	measuring	the	ability	of	your	recommender	system	to	predict	the	ratings	of	movies	that	a
person	already	watched.	But	isn't	the	purpose	of	a	recommender	engine	to	recommend	movies	that	a
person	hasn't	watched,	that	they	might	enjoy?	Those	are	two	different	things.	So	unfortunately,	it's	not	very
easy	to	measure	the	thing	you	really	want	to	be	measuring.	So	sometimes,	you	do	kind	of	have	to	go	with
your	gut	instinct.	And,	the	right	way	to	measure	the	results	of	a	recommender	engine	is	to	measure	the
results	that	you're	trying	to	promote	through	it.

Maybe	I'm	trying	to	get	people	to	watch	more	movies,	or	rate	new	movies	more	highly,	or	buy	more	stuff.
Running	actual	controlled	experiments	on	a	real	website	would	be	the	right	way	to	optimize	for	that,	as
opposed	to	using	train/test.	So,	you	know,	I	went	into	a	little	bit	more	detail	there	than	I	probably	should
have,	but	the	lesson	is,	you	can't	always	think	about	these	things	in	black	and	white.	Sometimes,	you	can't
really	measure	things	directly	and	quantitatively,	and	you	have	to	use	a	little	bit	of	common	sense,	and	this
is	an	example	of	that.

Anyway,	those	are	some	ideas	on	how	to	go	back	and	improve	upon	the	results	of	this	recommender
engine	that	we	wrote.	So,	please	feel	free	to	tinker	around	with	it,	see	if	you	can	improve	upon	it	however
you	wish	to,	and	have	some	fun	with	it.	This	is	actually	a	very	interesting	part	of	the	book,	so	I	hope	you
enjoy	it!





Summary
So,	go	give	it	a	try!	See	if	you	can	improve	on	our	initial	results	there.	There's	some	simple	ideas	there	to
try	to	make	those	recommendations	better,	and	some	much	more	complicated	ones	too.	Now,	there's	no
right	or	wrong	answer;	I'm	not	going	to	ask	you	to	turn	in	your	work,	and	I'm	not	going	to	review	your
work.	You	know,	you	decide	to	play	around	with	it	and	get	some	familiarity	with	it,	and	experiment,	and
see	what	results	you	get.	That's	the	whole	point	-	just	to	get	you	more	familiar	with	using	Python	for	this
sort	of	thing,	and	get	more	familiar	with	the	concepts	behind	item-based	collaborative	filtering.

We've	looked	at	different	recommender	systems	in	this	chapter-we	ruled	out	a	user-based	collaborative
filtering	system	and	dove	straight	in	to	an	item-based	system.	We	then	used	various	functions	from	pandas
to	generate	and	refine	our	results,	and	I	hope	you've	seen	the	power	of	pandas	here.

In	the	next	chapter,	we'll	take	a	look	at	more	advanced	data	mining	and	machine	learning	techniques
including	K-nearest	neighbors.	I	look	forward	to	explaining	those	to	you	and	seeing	how	they	can	be
useful.



	



More	Data	Mining	and	Machine	Learning
Techniques
	

In	this	chapter,	we	talk	about	a	few	more	data	mining	and	machine	learning	techniques.	We	will	talk	about
a	really	simple	technique	called	k-nearest	neighbors	(KNN).	We'll	then	use	KNN	to	predict	a	rating	for
a	movie.	After	that,	we'll	go	on	to	talk	about	dimensionality	reduction	and	principal	component	analysis.
We'll	also	look	at	an	example	of	PCA	where	we	will	reduce	4D	data	to	two	dimensions	while	still
preserving	its	variance.

We'll	then	walk	through	the	concept	of	data	warehousing	and	see	the	advantages	of	the	newer	ELT	process
over	the	ETL	process.	We'll	learn	the	fun	concept	of	reinforcement	learning	and	see	the	technique	used
behind	the	intelligent	Pac-Man	agent	of	the	Pac-Man	game.	Lastly,	we'll	see	some	fancy	terminology	used
for	reinforcement	learning.

We'll	cover	the	following	topics:

The	concept	of	k-nearest	neighbors
Implementation	of	KNN	to	predict	the	rating	of	a	movie
Dimensionality	reduction	and	principal	component	analysis
Example	of	PCA	with	the	Iris	dataset
Data	warehousing	and	ETL	versus	ELT
What	is	reinforcement	learning
The	working	behind	the	intelligent	Pac-Man	game
Some	fancy	words	used	for	reinforcement	learning

	

	





K-nearest	neighbors	-	concepts
Let's	talk	about	a	few	data	mining	and	machine	learning	techniques	that	employers	expect	you	to	know
about.	We'll	start	with	a	really	simple	one	called	KNN	for	short.	You're	going	to	be	surprised	at	just	how
simple	a	good	supervised	machine	learning	technique	can	be.	Let's	take	a	look!

KNN	sounds	fancy	but	it's	actually	one	of	the	simplest	techniques	out	there!	Let's	say	you	have	a	scatter
plot	and	you	can	compute	the	distance	between	any	two	points	on	that	scatter	plot.	Let's	assume	that	you
have	a	bunch	of	data	that	you've	already	classified,	that	you	can	train	the	system	from.	If	I	have	a	new	data
point,	all	I	do	is	look	at	the	KNN	based	on	that	distance	metric	and	let	them	all	vote	on	the	classification
of	that	new	point.

Let's	imagine	that	the	following	scatter	plot	is	plotting	movies.	The	squares	represent	science	fiction
movies,	and	the	triangles	represent	drama	movies.	We'll	say	that	this	is	plotting	ratings	versus	popularity,
or	anything	else	you	can	dream	up:

Here,	we	have	some	sort	of	distance	that	we	can	compute	based	on	rating	and	popularity	between	any	two
points	on	the	scatter	plot.	Let's	say	a	new	point	comes	in,	a	new	movie	that	we	don't	know	the	genre	for.
What	we	could	do	is	set	K	to	3	and	take	the	3	nearest	neighbors	to	this	point	on	the	scatter	plot;	they	can
all	then	vote	on	the	classification	of	the	new	point/movie.

You	can	see	if	I	take	the	three	nearest	neighbors	(K=3),	I	have	2	drama	movies	and	1	science	fiction
movie.	I	would	then	let	them	all	vote,	and	we	would	choose	the	classification	of	drama	for	this	new	point
based	on	those	3	nearest	neighbors.	Now,	if	I	were	to	expand	this	circle	to	include	5	nearest	neighbors,
that	is	K=5,	I	get	a	different	answer.	So,	in	that	case	I	pick	up	3	science	fiction	and	2	drama	movies.	If	I
let	them	all	vote	I	would	end	up	with	a	classification	of	science	fiction	for	the	new	movie	instead.

Our	choice	of	K	can	be	very	important.	You	want	to	make	sure	it's	small	enough	that	you	don't	go	too	far
and	start	picking	up	irrelevant	neighbors,	but	it	has	to	be	big	enough	to	enclose	enough	data	points	to	get	a
meaningful	sample.	So,	often	you'll	have	to	use	train/test	or	a	similar	technique	to	actually	determine	what
the	right	value	of	K	is	for	a	given	dataset.	But,	at	the	end	of	the	day,	you	have	to	just	start	with	your
intuition	and	work	from	there.

That's	all	there	is	to	it,	it's	just	that	simple.	So,	it	is	a	very	simple	technique.	All	you're	doing	is	literally
taking	the	k	nearest	neighbors	on	a	scatter	plot,	and	letting	them	all	vote	on	a	classification.	It	does	qualify
as	supervised	learning	because	it	is	using	the	training	data	of	a	set	of	known	points,	that	is,	known
classifications,	to	inform	the	classification	of	a	new	point.



But	let's	do	something	a	little	bit	more	complicated	with	it	and	actually	play	around	with	movies,	just
based	on	their	metadata.	Let's	see	if	we	can	actually	figure	out	the	nearest	neighbors	of	a	movie	based	on
just	the	intrinsic	values	of	those	movies,	for	example,	the	ratings	for	it,	the	genre	information	for	it:

In	theory,	we	could	recreate	something	similar	to	Customers	Who	Watched	This	Item	Also	Watched	(the
above	image	is	a	screenshot	from	Amazon)	just	using	k-nearest	Neighbors.	And,	I	can	take	it	one	step
further:	once	I	identify	the	movies	that	are	similar	to	a	given	movie	based	on	the	k-nearest	Neighbors
algorithm,	I	can	let	them	all	vote	on	a	predicted	rating	for	that	movie.

That's	what	we're	going	to	do	in	our	next	example.	So	you	now	have	the	concepts	of	KNN,	k-nearest
neighbors.	Let's	go	ahead	and	apply	that	to	an	example	of	actually	finding	movies	that	are	similar	to	each
other	and	using	those	nearest	neighbor	movies	to	predict	the	rating	for	another	movie	we	haven't	seen
before.





Using	KNN	to	predict	a	rating	for	a	movie
Alright,	we're	going	to	actually	take	the	simple	idea	of	KNN	and	apply	that	to	a	more	complicated
problem,	and	that's	predicting	the	rating	of	a	movie	given	just	its	genre	and	rating	information.	So,	let's
dive	in	and	actually	try	to	predict	movie	ratings	just	based	on	the	KNN	algorithm	and	see	where	we	get.
So,	if	you	want	to	follow	along,	go	ahead	and	open	up	the	KNN.ipynb	and	you	can	play	along	with	me.

What	we're	going	to	do	is	define	a	distance	metric	between	movies	just	based	on	their	metadata.	By
metadata	I	just	mean	information	that	is	intrinsic	to	the	movie,	that	is,	the	information	associated	with	the
movie.	Specifically,	we're	going	to	look	at	the	genre	classifications	of	the	movie.

Every	movie	in	our	MovieLens	dataset	has	additional	information	on	what	genre	it	belongs	to.	A	movie	can
belong	to	more	than	one	genre,	a	genre	being	something	like	science	fiction,	or	drama,	or	comedy,	or
animation.	We	will	also	look	at	the	overall	popularity	of	the	movie,	given	by	the	number	of	people	who
rated	it,	and	we	also	know	the	average	rating	of	each	movie.	I	can	combine	all	this	information	together	to
basically	create	a	metric	of	distance	between	two	movies	just	based	on	rating	information	and	genre
information.	Let's	see	what	we	get.

We'll	use	pandas	again	to	make	life	simple,	and	if	you	are	following	along,	again	make	sure	to	change	the
path	to	the	MovieLens	dataset	to	wherever	you	installed	it,	which	will	almost	certainly	not	be	what	is	in	this
Python	notebook.

Please	go	ahead	and	change	that	if	you	want	to	follow	along.	As	before,	we're	just	going	to	import	the
actual	ratings	data	file	itself,	which	is	u.data	using	the	read_csv()	function	in	pandas.	We're	going	to	tell	that
it	actually	has	a	tab-delimiter	and	not	a	comma.	We're	going	to	import	the	first	3	columns,	which	represent
the	user_id,	movie_id,	and	rating,	for	every	individual	movie	rating	in	our	dataset:

import	pandas	as	pd	

	

r_cols	=	['user_id',	'movie_id',	'rating']	

ratings	=	pd.read_csv('C:\DataScience\ml-100k\u.data',	sep='\t',	names=r_cols,	usecols=range(3))	

ratings.head()ratings.head()	

If	we	go	ahead	and	run	that	and	look	at	the	top	of	it,	we	can	see	that	it's	working,	here's	how	the	output
should	look	like:

We	end	up	with	a	DataFrame	that	has	user_id,	movie_id,	and	rating.	For	example,	user_id	0	rated	movie_id	50,
which	I	believe	is	Star	Wars,	5	stars,	and	so	on	and	so	forth.

The	next	thing	we	have	to	figure	out	is	aggregate	information	about	the	ratings	for	each	movie.	We	use	the



groupby()	function	in	pandas	to	actually	group	everything	by	movie_id.	We're	going	to	combine	together	all
the	ratings	for	each	individual	movie,	and	we're	going	to	output	the	number	of	ratings	and	the	average
rating	score,	that	is	the	mean,	for	each	movie:

movieProperties	=	ratings.groupby('movie_id').agg({'rating':	

	[np.size,	np.mean]})	

movieProperties.head()	

Let's	go	ahead	and	do	that	-	comes	back	pretty	quickly,	here's	how	the	output	looks	like:

This	gives	us	another	DataFrame	that	tells	us,	for	example,	movie_id	1	had	452	ratings	(which	is	a	measure	of
its	popularity,	that	is,	how	many	people	actually	watched	it	and	rated	it),	and	a	mean	review	score	of	3.8.
So,	452	people	watched	movie_id	1,	and	they	gave	it	an	average	review	of	3.87,	which	is	pretty	good.

Now,	the	raw	number	of	ratings	isn't	that	useful	to	us.	I	mean	I	don't	know	if	452	means	it's	popular	or	not.
So,	to	normalize	that,	what	we're	going	to	do	is	basically	measure	that	against	the	maximum	and	minimum
number	of	ratings	for	each	movie.	We	can	do	that	using	the	lambda	function.	So,	we	can	apply	a	function	to
an	entire	DataFrame	this	way.

What	we're	going	to	do	is	use	the	np.min()	and	np.max()	functions	to	find	the	maximum	number	of	ratings	and
the	minimum	number	of	ratings	found	in	the	entire	dataset.	So,	we'll	take	the	most	popular	movie	and	the
least	popular	movie	and	find	the	range	there,	and	normalize	everything	against	that	range:

movieNumRatings	=	pd.DataFrame(movieProperties['rating']['size'])	

movieNormalizedNumRatings	=	movieNumRatings.apply(lambda	x:	(x	-	np.min(x))	/	(np.max(x)	-	np.min(x)))	

movieNormalizedNumRatings.head()	

What	this	gives	us,	when	we	run	it,	is	the	following:

This	is	basically	a	measure	of	popularity	for	each	movie,	on	a	scale	of	0	to	1.	So,	a	score	of	0	here	would
mean	that	nobody	watched	it,	it's	the	least	popular	movie,	and	a	score	of	1	would	mean	that	everybody



watched,	it's	the	most	popular	movie,	or	more	specifically,	the	movie	that	the	most	people	watched.	So,
we	have	a	measure	of	movie	popularity	now	that	we	can	use	for	our	distance	metric.

Next,	let's	extract	some	general	information.	So,	it	turns	out	that	there	is	a	u.item	file	that	not	only	contains
the	movie	names,	but	also	all	the	genres	that	each	movie	belongs	to:

movieDict	=	{}	

with	open(r'c:/DataScience/ml-100k/u.item')	as	f:	

				temp	=	''	

				for	line	in	f:	

								fields	=	line.rstrip('\n').split('|')	

								movieID	=	int(fields[0])	

								name	=	fields[1]	

								genres	=	fields[5:25]	

								genres	=	map(int,	genres)	

								movieDict[movieID]	=	(name,	genres,						

								movieNormalizedNumRatings.loc[movieID].get('size'),movieProperties.loc[movieID].rating.get('mean'))	

The	code	above	will	actually	go	through	each	line	of	u.item.	We're	doing	this	the	hard	way;	we're	not	using
any	pandas	functions;	we're	just	going	to	use	straight-up	Python	this	time.	Again,	make	sure	you	change
that	path	to	wherever	you	installed	this	information.

Next,	we	open	our	u.item	file,	and	then	iterate	through	every	line	in	the	file	one	at	a	time.	We	strip	out	the
new	line	at	the	end	and	split	it	based	on	the	pipe-delimiters	in	this	file.	Then,	we	extract	the	movieID,	the
movie	name	and	all	of	the	individual	genre	fields.	So	basically,	there's	a	bunch	of	0s	and	1s	in	19
different	fields	in	this	source	data,	where	each	one	of	those	fields	represents	a	given	genre.	We	then
construct	a	Python	dictionary	in	the	end	that	maps	movie	IDs	to	their	names,	genres,	and	then	we	also	fold
back	in	our	rating	information.	So,	we	will	have	name,	genre,	popularity	on	a	scale	of	0	to	1,	and	the
average	rating.	So,	that's	what	this	little	snippet	of	code	does.	Let's	run	that!	And,	just	to	see	what	we	end
up	with,	we	can	extract	the	value	for	movie_id	1:

movieDict[1]	

Following	is	the	output	of	the	preceding	code:

Entry	1	in	our	dictionary	for	movie_id	1	happens	to	be	Toy	Story,	an	old	Pixar	film	from	1995	you've
probably	heard	of.	Next	is	a	list	of	all	the	genres,	where	a	0	indicates	it	is	not	part	of	that	genre,	and	1
indicates	it	is	part	of	that	genre.	There	is	a	data	file	in	the	MovieLens	dataset	that	will	tell	you	what	each	of
these	genre	fields	actually	corresponds	to.

For	our	purposes,	that's	not	actually	important,	right?	We're	just	trying	to	measure	distance	between
movies	based	on	their	genres.	So,	all	that	matters	mathematically	is	how	similar	this	vector	of	genres	is	to
another	movie,	okay?	The	actual	genres	themselves,	not	important!	We	just	want	to	see	how	same	or
different	two	movies	are	in	their	genre	classifications.	So	we	have	that	genre	list,	we	have	the	popularity
score	that	we	computed,	and	we	have	there	the	mean	or	average	rating	for	Toy	Story.	Okay,	let's	go	ahead
and	figure	out	how	to	combine	all	this	information	together	into	a	distance	metric,	so	we	can	find	the	k-
nearest	neighbors	for	Toy	Story,	for	example.



I've	rather	arbitrarily	computed	this	ComputeDistance()	function,	that	takes	two	movie	IDs	and	computes	a
distance	score	between	the	two.	We're	going	to	base	this,	first	of	all,	on	the	similarity,	using	a	cosine
similarity	metric,	between	the	two	genre	vectors.	Like	I	said,	we're	just	going	to	take	the	list	of	genres	for
each	movie	and	see	how	similar	they	are	to	each	other.	Again,	a	0	indicates	it's	not	part	of	that	genre,	a	1
indicates	it	is.

We	will	then	compare	the	popularity	scores	and	just	take	the	raw	difference,	the	absolute	value	of	the
difference	between	those	two	popularity	scores	and	use	that	toward	the	distance	metric	as	well.	Then,	we
will	use	that	information	alone	to	define	the	distance	between	two	movies.	So,	for	example,	if	we
compute	the	distance	between	movie	IDs	2	and	4,	this	function	would	return	some	distance	function	based
only	on	the	popularity	of	that	movie	and	on	the	genres	of	those	movies.

Now,	imagine	a	scatter	plot	if	you	will,	like	we	saw	back	in	our	example	from	the	previous	sections,
where	one	axis	might	be	a	measure	of	genre	similarity,	based	on	cosine	metric,	the	other	axis	might	be
popularity,	okay?	We're	just	finding	the	distance	between	these	two	things:

from	scipy	import	spatial	

	

def	ComputeDistance(a,	b):	

				genresA	=	a[1]	

				genresB	=	b[1]	

				genreDistance	=	spatial.distance.cosine(genresA,	genresB)	

				popularityA	=	a[2]	

				popularityB	=	b[2]	

				popularityDistance	=	abs(popularityA	-	popularityB)	

				return	genreDistance	+	popularityDistance	

					

ComputeDistance(movieDict[2],	movieDict[4])	

For	this	example,	where	we're	trying	to	compute	the	distance	using	our	distance	metric	between	movies	2
and	4,	we	end	up	with	a	score	of	0.8:

Remember,	a	far	distance	means	it's	not	similar,	right?	We	want	the	nearest	neighbors,	with	the	smallest
distance.	So,	a	score	of	0.8	is	a	pretty	high	number	on	a	scale	of	0	to	1.	So	that's	telling	me	that	these
movies	really	aren't	similar.	Let's	do	a	quick	sanity	check	and	see	what	these	movies	really	are:

print	movieDict[2]	

print	movieDict[4]	

It	turns	out	it's	the	movies	GoldenEye	and	Get	Shorty,	which	are	pretty	darn	different	movies:

You	know,	you	have	James	Bond	action-adventure,	and	a	comedy	movie	-	not	very	similar	at	all!	They're
actually	comparable	in	terms	of	popularity,	but	the	genre	difference	did	it	in.	Okay!	So,	let's	put	it	all
together!

Next,	we're	going	to	write	a	little	bit	of	code	to	actually	take	some	given	movieID	and	find	the	KNN.	So,
all	we	have	to	do	is	compute	the	distance	between	Toy	Story	and	all	the	other	movies	in	our	movie
dictionary,	and	sort	the	results	based	on	their	distance	score.	That's	what	the	following	little	snippet	of



code	does.	If	you	want	to	take	a	moment	to	wrap	your	head	around	it,	it's	fairly	straightforward.

We	have	a	little	getNeighbors()	function	that	will	take	the	movie	that	we're	interested	in,	and	the	K	neighbors
that	we	want	to	find.	It'll	iterate	through	every	movie	that	we	have;	if	it's	actually	a	different	movie	than
we're	looking	at,	it	will	compute	that	distance	score	from	before,	append	that	to	the	list	of	results	that	we
have,	and	sort	that	result.	Then	we	will	pluck	off	the	K	top	results.

In	this	example,	we're	going	to	set	K	to	10,	find	the	10	nearest	neighbors.	We	will	find	the	10	nearest
neighbors	using	getNeighbors(),	and	then	we	will	iterate	through	all	these	10	nearest	neighbors	and	compute
the	average	rating	from	each	neighbor.	That	average	rating	will	inform	us	of	our	rating	prediction	for	the
movie	in	question.

As	a	side	effect,	we	also	get	the	10	nearest	neighbors	based	on	our	distance	function,
which	we	could	call	similar	movies.	So,	that	information	itself	is	useful.	Going	back	to
that	"Customers	Who	Watched	Also	Watched"	example,	if	you	wanted	to	do	a	similar
feature	that	was	just	based	on	this	distance	metric	and	not	actual	behavior	data,	this
might	be	a	reasonable	place	to	start,	right?

import	operator	

	

def	getNeighbors(movieID,	K):	

				distances	=	[]	

				for	movie	in	movieDict:	

								if	(movie	!=	movieID):	

												dist	=	ComputeDistance(movieDict[movieID],	

	movieDict[movie])	

												distances.append((movie,	dist))	

				distances.sort(key=operator.itemgetter(1))	

				neighbors	=	[]	

				for	x	in	range(K):	

								neighbors.append(distances[x][0])	

				return	neighbors	

	

K	=	10	

avgRating	=	0	

neighbors	=	getNeighbors(1,	K)	

for	neighbor	in	neighbors:	

				avgRating	+=	movieDict[neighbor][3]	

				print	movieDict[neighbor][0]	+	"	"	+	

	str(movieDict[neighbor][3])	

				avgRating	/=	float(K)	

So,	let's	go	ahead	and	run	this,	and	see	what	we	end	up	with.	The	output	of	the	following	code	is	as
follows:

The	results	aren't	that	unreasonable.	So,	we	are	using	as	an	example	the	movie	Toy	Story,	which	is
movieID	1,	and	what	we	came	back	with,	for	the	top	10	nearest	neighbors,	are	a	pretty	good	selection	of
comedy	and	children's	movies.	So,	given	that	Toy	Story	is	a	popular	comedy	and	children's	movie,	we	got
a	bunch	of	other	popular	comedy	and	children's	movies;	so,	it	seems	to	work!	We	didn't	have	to	use	a



bunch	of	fancy	collaborative	filtering	algorithms,	these	results	aren't	that	bad.

Next,	let's	use	KNN	to	predict	the	rating,	where	we're	thinking	of	the	rating	as	the	classification	in	this
example:

avgRating	

Following	is	the	output	of	the	preceding	code:

We	end	up	with	a	predicted	rating	of	3.34,	which	actually	isn't	all	that	different	from	the	actual	rating	for
that	movie,	which	was	3.87.	So	not	great,	but	it's	not	too	bad	either!	I	mean	it	actually	works	surprisingly
well,	given	how	simple	this	algorithm	is!





Activity
Most	of	the	complexity	in	this	example	was	just	in	determining	our	distance	metric,	and	you	know	we
intentionally	got	a	little	bit	fancy	there	just	to	keep	it	interesting,	but	you	can	do	anything	else	you	want	to.
So,	if	you	want	fiddle	around	with	this,	I	definitely	encourage	you	to	do	so.	Our	choice	of	10	for	K	was
completely	out	of	thin	air,	I	just	made	that	up.	How	does	this	respond	to	different	K	values?	Do	you	get
better	results	with	a	higher	value	of	K?	Or	with	a	lower	value	of	K?	Does	it	matter?

If	you	really	want	to	do	a	more	involved	exercise	you	can	actually	try	to	apply	it	to	train/test,	to	actually
find	the	value	of	K	that	most	optimally	can	predict	the	rating	of	the	given	movie	based	on	KNN.	And,	you
can	use	different	distance	metrics,	I	kind	of	made	that	up	too!	So,	play	around	the	distance	metric,	maybe
you	can	use	different	sources	of	information,	or	weigh	things	differently.	It	might	be	an	interesting	thing	to
do.	Maybe,	popularity	isn't	really	as	important	as	the	genre	information,	or	maybe	it's	the	other	way
around.	See	what	impact	that	has	on	your	results	too.	So,	go	ahead	and	mess	with	these	algorithms,	mess
with	the	code	and	run	with	it,	and	see	what	you	can	get!	And,	if	you	do	find	a	significant	way	of	improving
on	this,	share	that	with	your	classmates.

That	is	KNN	in	action!	So,	a	very	simple	concept	but	it	can	be	actually	pretty	powerful.	So,	there	you
have	it:	similar	movies	just	based	on	the	genre	and	popularity	and	nothing	else.	Works	out	surprisingly
well!	And,	we	used	the	concept	of	KNN	to	actually	use	those	nearest	neighbors	to	predict	a	rating	for	a
new	movie,	and	that	actually	worked	out	pretty	well	too.	So,	that's	KNN	in	action,	very	simple	technique
but	often	it	works	out	pretty	darn	good!





Dimensionality	reduction	and	principal
component	analysis
Alright,	time	to	get	all	trippy!	We're	going	to	talking	about	higher	dimensions,	and	dimensionality
reduction.	Sounds	scary!	There	is	some	fancy	math	involved,	but	conceptually	it's	not	as	hard	to	grasp	as
you	might	think.	So,	let's	talk	about	dimensionality	reduction	and	principal	component	analysis	next.	Very
dramatic	sounding!	Usually	when	people	talk	about	this,	they're	talking	about	a	technique	called	principal
component	analysis	or	PCA,	and	a	specific	technique	called	singular	value	decomposition	or	SVD.	So
PCA	and	SVD	are	the	topics	of	this	section.	Let's	dive	into	it!

	





Dimensionality	reduction
So,	what	is	the	curse	of	dimensionality?	Well,	a	lot	of	problems	can	be	thought	of	having	many	different
dimensions.	So,	for	example,	when	we	were	doing	movie	recommendations,	we	had	attributes	of	various
movies,	and	every	individual	movie	could	be	thought	of	as	its	own	dimension	in	that	data	space.

If	you	have	a	lot	of	movies,	that's	a	lot	of	dimensions	and	you	can't	really	wrap	your	head	around	more
than	3,	because	that's	what	we	grew	up	to	evolve	within.	You	might	have	some	sort	of	data	that	has	many
different	features	that	you	care	about.	You	know,	in	a	moment	we'll	look	at	an	example	of	flowers	that	we
want	to	classify,	and	that	classification	is	based	on	4	different	measurements	of	the	flowers.	Those	4
different	features,	those	4	different	measurements	can	represent	4	dimensions,	which	again,	is	very	hard	to
visualize.

For	this	reason,	dimensionality	reduction	techniques	exist	to	find	a	way	to	reduce	higher	dimensional
information	into	lower	dimensional	information.	Not	only	can	that	make	it	easier	to	look	at,	and	classify
things,	but	it	can	also	be	useful	for	things	like	compressing	data.	So,	by	preserving	the	maximum	amount
of	variance,	while	we	reduce	the	number	of	dimensions,	we're	more	compactly	representing	a	dataset.	A
very	common	application	of	dimensionality	reduction	is	not	just	for	visualization,	but	also	for
compression,	and	for	feature	extraction.	We'll	talk	about	that	a	little	bit	more	in	a	moment.

A	very	simple	example	of	dimensionality	reduction	can	be	thought	of	as	k-means	clustering:

So	you	know,	for	example,	we	might	start	off	with	many	points	that	represent	many	different	dimensions	in
a	dataset.	But,	ultimately,	we	can	boil	that	down	to	K	different	centroids,	and	your	distance	to	those
centroids.	That's	one	way	of	boiling	data	down	to	a	lower	dimensional	representation.





Principal	component	analysis
Usually,	when	people	talk	about	dimensionality	reduction,	they're	talking	about	a	technique	called
principal	component	analysis.	This	is	a	much	more-fancy	technique,	it	gets	into	some	pretty	involved
mathematics.	But,	at	a	high-level,	all	you	need	to	know	is	that	it	takes	a	higher	dimensional	data	space,
and	it	finds	planes	within	that	data	space	and	higher	dimensions.

These	higher	dimensional	planes	are	called	hyper	planes,	and	they	are	defined	by	things	called
eigenvectors.	You	take	as	many	planes	as	you	want	dimensions	in	the	end,	project	that	data	onto	those
hyperplanes,	and	those	become	the	new	axes	in	your	lower	dimensional	data	space:

You	know,	unless	you're	familiar	with	higher	dimensional	math	and	you've	thought	about	it	before,	it's
going	to	be	hard	to	wrap	your	head	around!	But,	at	the	end	of	the	day,	it	means	we're	choosing	planes	in	a
higher	dimensional	space	that	still	preserve	the	most	variance	in	our	data,	and	project	the	data	onto	those
higher	dimensional	planes	that	we	then	bring	into	a	lower	dimensional	space,	okay?

You	don't	really	have	to	understand	all	the	math	to	use	it;	the	important	point	is	that	it's	a	very	principled
way	of	reducing	a	dataset	down	to	a	lower	dimensional	space	while	still	preserving	the	variance	within
it.	We	talked	about	image	compression	as	one	application	of	this.	So	you	know,	if	I	want	to	reduce	the
dimensionality	in	an	image,	I	could	use	PCA	to	boil	it	down	to	its	essence.

Facial	recognition	is	another	example.	So,	if	I	have	a	dataset	of	faces,	maybe	each	face	represents	a	third
dimension	of	2D	images,	and	I	want	to	boil	that	down,	SVD	and	principal	component	analysis	can	be	a
way	to	identify	the	features	that	really	count	in	a	face.	So,	it	might	end	up	focusing	more	on	the	eyes	and
the	mouth,	for	example,	those	important	features	that	are	necessary	for	preserving	the	variance	within	that
dataset.	So,	it	can	produce	some	very	interesting	and	very	useful	results	that	just	emerge	naturally	out	of
the	data,	which	is	kind	of	cool!

To	make	it	real,	we're	going	to	use	a	simpler	example,	using	what's	called	the	Iris	dataset.	This	is	a



dataset	that's	included	with	scikit-learn.	It's	used	pretty	commonly	in	examples,	and	here's	the	idea	behind
it:	So,	an	Iris	actually	has	2	different	kinds	of	petals	on	its	flower.	One's	called	a	petal,	which	is	the
flower	petals	you're	familiar	with,	and	it	also	has	something	called	a	sepal,	which	is	kind	of	this
supportive	lower	set	of	petals	on	the	flower.

We	can	take	a	bunch	of	different	species	of	Iris,	and	measure	the	petal	length	and	width,	and	the	sepal
length	and	width.	So,	together	the	length	and	width	of	the	petal,	and	the	length	and	width	of	the	sepal	are	4
different	measurements	that	correspond	to	4	different	dimensions	in	our	dataset.	I	want	to	use	that	to
classify	what	species	an	Iris	might	belong	to.	Now,	PCA	will	let	us	visualize	this	in	2	dimensions	instead
of	4,	while	still	preserving	the	variance	in	that	dataset.	So,	let's	see	how	well	that	works	and	actually
write	some	Python	code	to	make	PCA	happen	on	the	Iris	dataset.

So,	those	were	the	concepts	of	dimensionality	reduction,	principal	component	analysis,	and	singular	value
decomposition.	All	big	fancy	words	and	yeah,	it	is	kind	of	a	fancy	thing.	You	know,	we're	dealing	with
reducing	higher	dimensional	spaces	down	to	smaller	dimensional	spaces	in	a	way	that	preserves	their
variance.	Fortunately,	scikit-learn	makes	this	extremely	easy	to	do,	like	3	lines	of	code	is	all	you	need	to
actually	apply	PCA.	So	let's	make	that	happen!





A	PCA	example	with	the	Iris	dataset
Let's	apply	principal	component	analysis	to	the	Iris	dataset.	This	is	a	4D	dataset	that	we're	going	to
reduce	down	to	2	dimensions.	We're	going	to	see	that	we	can	actually	still	preserve	most	of	the
information	in	that	dataset,	even	by	throwing	away	half	of	the	dimensions.	It's	pretty	cool	stuff,	and	it's
pretty	simple	too.	Let's	dive	in	and	do	some	principal	component	analysis	and	cure	the	curse	of
dimensionality.	Go	ahead	and	open	up	the	PCA.ipynb	file.

It's	actually	very	easy	to	do	using	scikit-learn,	as	usual!	Again,	PCA	is	a	dimensionality	reduction
technique.	It	sounds	very	science-fictiony,	all	this	talk	of	higher	dimensions.	But,	just	to	make	it	more
concrete	and	real	again,	a	common	application	is	image	compression.	You	can	think	of	an	image	of	a
black	and	white	picture,	as	3	dimensions,	where	you	have	width,	as	your	x-axis,	and	your	y-axis	of	height,
and	each	individual	cell	has	some	brightness	value	on	a	scale	of	0	to	1,	that	is	black	or	white,	or	some
value	in	between.	So,	that	would	be	3D	data;	you	have	2	spatial	dimensions,	and	then	a	brightness	and
intensity	dimension	on	top	of	that.

If	you	were	to	distill	that	down	to	say	2	dimensions	alone,	that	would	be	a	compressed	image	and,	if	you
were	to	do	that	in	a	technique	that	preserved	the	variance	in	that	image	as	well	as	possible,	you	could	still
reconstruct	the	image,	without	a	whole	lot	of	loss	in	theory.	So,	that's	dimensionality	reduction,	distilled
down	to	a	practical	example.

Now,	we're	going	to	use	a	different	example	here	using	the	Iris	dataset,	and	scikit-learn	includes	this.	All
it	is	is	a	dataset	of	various	Iris	flower	measurements,	and	the	species	classification	for	each	Iris	in	that
dataset.	And	it	has	also,	like	I	said	before,	the	length	and	width	measurement	of	both	the	petal	and	the
sepal	for	each	Iris	specimen.	So,	between	the	length	and	width	of	the	petal,	and	the	length	and	width	of	the
sepal	we	have	4	dimensions	of	feature	data	in	our	dataset.

We	want	to	distill	that	down	to	something	we	can	actually	look	at	and	understand,	because	your	mind
doesn't	deal	with	4	dimensions	very	well,	but	you	can	look	at	2	dimensions	on	a	piece	of	paper	pretty
easily.	Let's	go	ahead	and	load	that	up:

from	sklearn.datasets	import	load_iris	

from	sklearn.decomposition	import	PCA	

import	pylab	as	pl	

from	itertools	import	cycle	

	

iris	=	load_iris()	

	

numSamples,	numFeatures	=	iris.data.shape	

print	numSamples	

print	numFeatures	

print	list(iris.target_names)	

There's	a	handy	dandy	load_iris()	function	built	into	scikit-learn	that	will	just	load	that	up	for	you	with	no
additional	work;	so	you	can	just	focus	on	the	interesting	part.	Let's	take	a	look	at	what	that	dataset	looks
like,	the	output	of	the	preceding	code	is	as	follows:



You	can	see	that	we	are	extracting	the	shape	of	that	dataset,	which	means	how	many	data	points	we	have
in	it,	that	is	150,	and	how	many	features,	or	how	many	dimensions	that	dataset	has,	and	that	is	4.	So,	we
have	150	Iris	specimens	in	our	dataset,	with	4	dimensions	of	information.	Again,	that	is	the	length	and
width	of	the	sepal,	and	the	length	and	width	of	the	petal,	for	a	total	of	4	features,	which	we	can	think	of	as
4	dimensions.

We	can	also	print	out	the	list	of	target	names	in	this	dataset,	which	are	the	classifications,	and	we	can	see
that	each	Iris	belongs	to	one	of	three	different	species:	Setosa,	Versicolor,	or	Virginica.	That's	the	data
that	we're	working	with:	150	Iris	specimens,	classified	into	one	of	3	species,	and	we	have	4	features
associated	with	each	Iris.

Let's	look	at	how	easy	PCA	is.	Even	though	it's	a	very	complicated	technique	under	the	hood,	doing	it	is
just	a	few	lines	of	code.	We're	going	to	assign	the	entire	Iris	dataset	and	we're	going	to	call	it	X.	We	will
then	create	a	PCA	model,	and	we're	going	to	keep	n_components=2,	because	we	want	2	dimensions,	that	is,
we're	going	to	go	from	4	to	2.

We're	going	to	use	whiten=True,	that	means	that	we're	going	to	normalize	all	the	data,	and	make	sure	that
everything	is	nice	and	comparable.	Normally	you	will	want	to	do	that	to	get	good	results.	Then,	we	will
fit	the	PCA	model	to	our	Iris	dataset	X.	We	can	use	that	model	then,	to	transform	that	dataset	down	to	2
dimensions.	Let's	go	ahead	and	run	that.	It	happened	pretty	quickly!

X	=	iris.data	

pca	=	PCA(n_components=2,	whiten=True).fit(X)	

X_pca	=	pca.transform(X)	

Please	think	about	what	just	happened	there.	We	actually	created	a	PCA	model	to	reduce	4	dimensions
down	to	2,	and	it	did	that	by	choosing	2	4D	vectors,	to	create	hyperplanes	around,	to	project	that	4D	data
down	to	2	dimensions.	You	can	actually	see	what	those	4D	vectors	are,	those	eigenvectors,	by	printing	out
the	actual	components	of	PCA.	So,	PCA	stands	for	Principal	Component	Analysis,	those	principal
components	are	the	eigenvectors	that	we	chose	to	define	our	planes	about:

print	pca.components_	

Output	to	the	preceding	code	is	as	follows:

You	can	actually	look	at	those	values,	they're	not	going	to	mean	a	lot	to	you,	because	you	can't	really
picture	4	dimensions	anyway,	but	we	did	that	just	so	you	can	see	that	it's	actually	doing	something	with
principal	components.	So,	let's	evaluate	our	results:

print	pca.explained_variance_ratio_	

print	sum(pca.explained_variance_ratio_)	

The	PCA	model	gives	us	back	something	called	explained_variance_ratio.	Basically,	that	tells	you	how	much
of	the	variance	in	the	original	4D	data	was	preserved	as	I	reduced	it	down	to	2	dimensions.	So,	let's	go
ahead	and	take	a	look	at	that:



What	it	gives	you	back	is	actually	a	list	of	2	items	for	the	2	dimensions	that	we	preserved.	This	is	telling
me	that	in	the	first	dimension	I	can	actually	preserve	92%	of	the	variance	in	the	data,	and	the	second
dimension	only	gave	me	an	additional	5%	of	variance.	If	I	sum	it	together,	these	2	dimensions	that	I
projected	my	data	down	into,	I	still	preserved	over	97%	of	the	variance	in	the	source	data.	We	can	see
that	4	dimensions	weren't	really	necessary	to	capture	all	the	information	in	this	dataset,	which	is	pretty
interesting.	It's	pretty	cool	stuff!

If	you	think	about	it,	why	do	you	think	that	might	be?	Well,	maybe	the	overall	size	of	the	flower	has	some
relationship	to	the	species	at	its	center.	Maybe	it's	the	ratio	of	length	to	width	for	the	petal	and	the	sepal.
You	know,	some	of	these	things	probably	move	together	in	concert	with	each	other	for	a	given	species,	or
for	a	given	overall	size	of	a	flower.	So,	perhaps	there	are	relationships	between	these	4	dimensions	that
PCA	is	extracting	on	its	own.	It's	pretty	cool,	and	pretty	powerful	stuff.	Let's	go	ahead	and	visualize	this.

The	whole	point	of	reducing	this	down	to	2	dimensions	was	so	that	we	could	make	a	nice	little	2D	scatter
plot	of	it,	at	least	that's	our	objective	for	this	little	example	here.	So,	we're	going	to	do	a	little	bit	of
Matplotlib	magic	here	to	do	that.	There	is	some	sort	of	fancy	stuff	going	on	here	that	I	should	at	least
mention.	So,	what	we're	going	to	do	is	create	a	list	of	colors:	red,	green	and	blue.	We're	going	to	create	a
list	of	target	IDs,	so	that	the	values	0,	1,	and	2	map	to	the	different	Iris	species	that	we	have.

What	we're	going	to	do	is	zip	all	this	up	with	the	actual	names	of	each	species.	The	for	loop	will	iterate
through	the	3	different	Iris	species,	and	as	it	does	that,	we're	going	to	have	the	index	for	that	species,	a
color	associated	with	it,	and	the	actual	human-readable	name	for	that	species.	We'll	take	one	species	at	a
time	and	plot	it	on	our	scatter	plot	just	for	that	species	with	a	given	color	and	the	given	label.	We	will
then	add	in	our	legend	and	show	the	results:

colors	=	cycle('rgb')	

target_ids	=	range(len(iris.target_names))	

pl.figure()	

for	i,	c,	label	in	zip(target_ids,	colors,	iris.target_names):	

				pl.scatter(X_pca[iris.target	==	i,	0],	X_pca[iris.target	==	i,	1],	

								c=c,	label=label)	

pl.legend()	

pl.show()	

The	following	is	what	we	end	up	with:



That	is	our	4D	Iris	data	projected	down	to	2	dimensions.	Pretty	interesting	stuff!	You	can	see	it	still
clusters	together	pretty	nicely.	You	know,	you	have	all	the	Virginicas	sitting	together,	all	the	Versicolors
sitting	in	the	middle,	and	the	Setosas	way	off	on	the	left	side.	It's	really	hard	to	imagine	what	these	actual
values	represent.	But,	the	important	point	is,	we've	projected	4D	data	down	to	2D,	and	in	such	a	way	that
we	still	preserve	the	variance.	We	can	still	see	clear	delineations	between	these	3	species.	A	little	bit	of
intermingling	going	on	in	there,	it's	not	perfect	you	know.	But	by	and	large,	it	was	pretty	effective.





Activity
As	you	recall	from	explained_variance_ratio,	we	actually	captured	most	of	the	variance	in	a	single	dimension.
Maybe	the	overall	size	of	the	flower	is	all	that	really	matters	in	classifying	it;	and	you	can	specify	that
with	one	feature.	So,	go	ahead	and	modify	the	results	if	you	are	feeling	up	to	it.	See	if	you	can	get	away
with	2	dimensions,	or	1	dimension	instead	of	2!	So,	go	change	that	n_components	to	1,	and	see	what	kind	of
variance	ratio	you	get.

What	happens?	Does	it	makes	sense?	Play	around	with	it,	get	some	familiarity	with	it.	That	is
dimensionality	reduction,	principal	component	analysis,	and	singular	value	decomposition	all	in	action.
Very,	very	fancy	terms,	and	you	know,	to	be	fair	it	is	some	pretty	fancy	math	under	the	hood.	But	as	you
can	see,	it's	a	very	powerful	technique	and	with	scikit-learn,	it's	not	hard	to	apply.	So,	keep	that	in	your
tool	chest.

And	there	you	have	it!	A	4D	dataset	of	flower	information	boiled	down	to	2	dimensions	that	we	can	both
easily	visualize,	and	also	still	see	clear	delineations	between	the	classifications	that	we're	interested	in.
So,	PCA	works	really	well	in	this	example.	Again,	it's	a	useful	tool	for	things	like	compression,	or	feature
extraction,	or	facial	recognition	as	well.	So,	keep	that	in	your	toolbox.





Data	warehousing	overview
Next,	we're	going	to	talk	a	little	bit	about	data	warehousing.	This	is	a	field	that's	really	been	upended
recently	by	the	advent	of	Hadoop,	and	some	big	data	techniques	and	cloud	computing.	So,	a	lot	of	big	buzz
words	there,	but	concepts	that	are	important	for	you	to	understand.

Let's	dive	in	and	explore	these	concepts!	Let's	talk	about	ELT	and	ETL,	and	data	warehousing	in	general.
This	is	more	of	a	concept,	as	opposed	to	a	specific	practical	technique,	so	we're	going	to	talk	about	it
conceptually.	But,	it	is	something	that's	likely	to	come	up	in	the	setting	of	a	job	interview.	So,	let's	make
sure	you	understand	these	concepts.

We'll	start	by	talking	about	data	warehousing	in	general.	What	is	a	data	warehouse?	Well,	it's	basically	a
giant	database	that	contains	information	from	many	different	sources	and	ties	them	together	for	you.	For
example,	maybe	you	work	at	a	big	ecommerce	company	and	they	might	have	an	ordering	system	that	feeds
information	about	the	stuff	people	bought	into	your	data	warehouse.

You	might	also	have	information	from	web	server	logs	that	get	ingested	into	the	data	warehouse.	This
would	allow	you	to	tie	together	browsing	information	on	the	website	with	what	people	ultimately	ordered
for	example.	Maybe	you	could	also	tie	in	information	from	your	customer	service	systems,	and	measure	if
there's	a	relationship	between	browsing	behavior	and	how	happy	the	customers	are	at	the	end	of	the	day.

A	data	warehouse	has	the	challenge	of	taking	data	from	many	different	sources,	transforming	them	into
some	sort	of	schema	that	allows	us	to	query	these	different	data	sources	simultaneously,	and	it	lets	us
make	insights,	through	data	analysis.	So,	large	corporations	and	organizations	have	this	sort	of	thing	pretty
commonly.	We're	going	into	the	concept	of	big	data	here.	You	can	have	a	giant	Oracle	database,	for
example,	that	contains	all	this	stuff	and	maybe	it's	partitioned	in	some	way,	and	replicated	and	it	has	all
sorts	of	complexity.	You	can	just	query	that	through	SQL,	structured	query	language,	or,	through	graphical
tools,	like	Tableau	which	is	a	very	popular	one	these	days.	That's	what	a	data	analyst	does,	they	query
large	datasets	using	stuff	like	Tableau.

That's	kind	of	the	difference	between	a	data	analyst	and	a	data	scientist.	You	might	be	actually	writing
code	to	perform	more	advanced	techniques	on	data	that	border	on	AI,	as	opposed	to	just	using	tools	to
extract	graphs	and	relationships	out	of	a	data	warehouse.	It's	a	very	complicated	problem.	At	Amazon,	we
had	an	entire	department	for	data	warehousing	that	took	care	of	this	stuff	full	time,	and	they	never	had
enough	people,	I	can	tell	you	that;	it's	a	big	job!

You	know,	there	are	a	lot	of	challenges	in	doing	data	warehousing.	One	is	data	normalization:	so,	you
have	to	figure	out	how	do	all	the	fields	in	these	different	data	sources	actually	relate	to	each	other?	How
do	I	actually	make	sure	that	a	column	in	one	data	source	is	comparable	to	a	column	from	another	data
source	and	has	the	same	set	of	data,	at	the	same	scale,	using	the	same	terminology?	How	do	I	deal	with
missing	data?	How	do	I	deal	with	corrupt	data	or	data	from	outliers,	or	from	robots	and	things	like	that?
These	are	all	very	big	challenges.	Maintaining	those	data	feeds	is	also	a	very	big	problem.

A	lot	can	go	wrong	when	you're	importing	all	this	information	into	your	data	warehouse,	especially	when
you	have	a	very	large	transformation	that	needs	to	happen	to	take	the	raw	data,	saved	from	web	logs,	into



an	actual	structured	database	table	that	can	be	imported	into	your	data	warehouse.	Scaling	also	can	get
tricky	when	you're	dealing	with	a	monolithic	data	warehouse.	Eventually,	your	data	will	get	so	large	that
those	transformations	themselves	start	to	become	a	problem.	This	starts	to	get	into	the	whole	topic	of	ELT
versus	ETL	thing.





ETL	versus	ELT
Let's	first	talk	about	ETL.	What	does	that	stand	for?	It	stands	for	extract,	transform,	and	load	-	and	that's
sort	of	the	conventional	way	of	doing	data	warehousing.

Basically,	first	you	extract	the	data	that	you	want	from	the	operational	systems	that	you	want.	So,	for
example,	I	might	extract	all	of	the	web	logs	from	our	web	servers	each	day.	Then	I	need	to	transform	all
that	information	into	an	actual	structured	database	table	that	I	can	import	into	my	data	warehouse.

This	transformation	stage	might	go	through	every	line	of	those	web	server	logs,	transform	that	into	an
actual	table,	where	I'm	plucking	out	from	each	web	log	line	things	like	session	ID,	what	page	they	looked
at,	what	time	it	was,	what	the	referrer	was	and	things	like	that,	and	I	can	organize	that	into	a	tabular
structure	that	I	can	then	load	into	the	data	warehouse	itself,	as	an	actual	table	in	a	database.	So,	as	data
becomes	larger	and	larger,	that	transformation	step	can	become	a	real	problem.	Think	about	how	much
processing	work	is	required	to	go	through	all	of	the	web	logs	on	Google,	or	Amazon,	or	any	large
website,	and	transform	that	into	something	a	database	can	ingest.	That	itself	becomes	a	scalability
challenge	and	something	that	can	introduce	stability	problems	through	the	entire	data	warehouse	pipeline.

That's	where	the	concept	of	ELT	comes	in,	and	it	kind	of	flips	everything	on	its	head.	It	says,	"Well,	what
if	we	don't	use	a	huge	Oracle	instance?	What	if	instead	we	use	some	of	these	newer	techniques	that	allow
us	to	have	a	more	distributed	database	over	a	Hadoop	cluster	that	lets	us	take	the	power	of	these
distributed	databases	like	Hive,	or	Spark,	or	MapReduce,	and	use	that	to	actually	do	the	transformation
after	it's	been	loaded"

The	idea	here	is	we're	going	to	extract	the	information	we	want	as	we	did	before,	say	from	a	set	of	web
server	logs.	But	then,	we're	going	to	load	that	straight	in	to	our	data	repository,	and	we're	going	to	use	the
power	of	the	repository	itself	to	actually	do	the	transformation	in	place.	So,	the	idea	here	is,	instead	of
doing	an	offline	process	to	transform	my	web	logs,	as	an	example,	into	a	structured	format,	I'm	just	going
to	suck	those	in	as	raw	text	files	and	go	through	them	one	line	at	a	time,	using	the	power	of	something	like
Hadoop,	to	actually	transform	those	into	a	more	structured	format	that	I	can	then	query	across	my	entire
data	warehouse	solution.

Things	like	Hive	let	you	host	a	massive	database	on	a	Hadoop	cluster.	There's	things	like	Spark	SQL	that
let	you	also	do	queries	in	a	very	SQL-like	data	warehouse-like	manner,	on	a	data	warehouse	that	is
actually	distributed	on	Hadoop	cluster.	There	are	also	distributed	NoSQL	data	stores	that	can	be	queried
using	Spark	and	MapReduce.	The	idea	is	that	instead	of	using	a	monolithic	database	for	a	data	warehouse,
you're	instead	using	something	built	on	top	of	Hadoop,	or	some	sort	of	a	cluster,	that	can	actually	not	only
scale	up	the	processing	and	querying	of	that	data,	but	also	scale	the	transformation	of	that	data	as	well.

Once	again,	you	first	extract	your	raw	data,	but	then	we're	going	to	load	it	into	the	data	warehouse	system
itself	as	is.	And,	then	use	the	power	of	the	data	warehouse,	which	might	be	built	on	Hadoop,	to	do	that
transformation	as	the	third	step.	Then	I	can	query	things	together.	So,	it's	a	very	big	project,	very	big	topic.
You	know,	data	warehousing	is	an	entire	discipline	in	and	of	itself.	We're	going	to	talk	about	Spark	some
more	in	this	book	very	soon,	which	is	one	way	of	handling	this	thing	-	there's	something	called	Spark	SQL
in	particular	that's	relevant.



The	overall	concept	here	is	that	if	you	move	from	a	monolithic	database	built	on	Oracle	or	MySQL	to	one
of	these	more	modern	distributed	databases	built	on	top	of	Hadoop,	you	can	take	that	transform	stage	and
actually	do	that	after	you've	loaded	in	the	raw	data,	as	opposed	to	before.	That	can	end	up	being	simpler
and	more	scalable,	and	taking	advantage	of	the	power	of	large	computing	clusters	that	are	available	today.

That's	ETL	versus	ELT,	the	legacy	way	of	doing	it	with	a	lot	of	clusters	all	over	the	place	in	cloud-based
computing	versus	a	way	that	makes	sense	today,	when	we	do	have	large	clouds	of	computing	available	to
us	for	transforming	large	datasets.	That's	the	concept.

ETL	is	kind	of	the	old	school	way	of	doing	it,	you	transform	a	bunch	of	data	offline	before	importing	it	in
and	loading	it	into	a	giant	data	warehouse,	monolithic	database.	But	with	today's	techniques,	with	cloud-
based	databases,	and	Hadoop,	and	Hive,	and	Spark,	and	MapReduce,	you	can	actually	do	it	a	little	bit
more	efficiently	and	take	the	power	of	a	cluster	to	actually	do	that	transformation	step	after	you've	loaded
the	raw	data	into	your	data	warehouse.

This	is	really	changing	the	field	and	it's	important	that	you	know	about	it.	Again,	there's	a	lot	more	to	learn
on	the	subject,	so	I	encourage	you	to	explore	more	on	this	topic.	But,	that's	the	basic	concept,	and	now	you
know	what	people	are	talking	about	when	they	talk	about	ETL	versus	ELT.





Reinforcement	learning
Our	next	topic's	a	fun	one:	reinforcement	learning.	We	can	actually	use	this	idea	with	an	example	of	Pac-
Man.	We	can	actually	create	a	little	intelligent	Pac-Man	agent	that	can	play	the	game	Pac-Man	really	well
on	its	own.	You'll	be	surprised	how	simple	the	technique	is	for	building	up	the	smarts	behind	this
intelligent	Pac-Man.	Let's	take	a	look!

So,	the	idea	behind	reinforcement	learning	is	that	you	have	some	sort	of	agent,	in	this	case	Pac-Man,	that
explores	some	sort	of	space,	and	in	our	example	that	space	will	be	the	maze	that	Pac-Man	is	in.	As	it
goes,	it	learns	the	value	of	different	state	changes	within	different	conditions.

For	example,	in	the	preceding	image,	the	state	of	Pac-Man	might	be	defined	by	the	fact	that	it	has	a	ghost
to	the	South,	and	a	wall	to	the	West,	and	empty	spaces	to	the	North	and	East,	and	that	might	define	the
current	state	of	Pac-Man.	The	state	changes	it	can	take	would	be	to	move	in	a	given	direction.	I	can	then
learn	the	value	of	going	in	a	certain	direction.	So,	for	example,	if	I	were	to	move	North,	nothing	would
really	happen,	there's	no	real	reward	associated	with	that.	But,	if	I	were	to	move	South	I	would	be
destroyed	by	the	ghost,	and	that	would	be	a	negative	value.

As	I	go	and	explore	the	entire	space,	I	can	build	up	a	set	of	all	the	possible	states	that	Pac-Man	can	be	in,
and	the	values	associated	with	moving	in	a	given	direction	in	each	one	of	those	states,	and	that's
reinforcement	learning.	And	as	it	explores	the	whole	space,	it	refines	these	reward	values	for	a	given
state,	and	it	can	then	use	those	stored	reward	values	to	choose	the	best	decision	to	make	given	a	current
set	of	conditions.	In	addition	to	Pac-Man,	there's	also	a	game	called	Cat	&	Mouse	that	is	an	example	that's
used	commonly	that	we'll	look	at	later.

The	benefit	of	this	technique	is	that	once	you've	explored	the	entire	set	of	possible	states	that	your	agent
can	be	in,	you	can	very	quickly	have	a	very	good	performance	when	you	run	different	iterations	of	this.
So,	you	know,	you	can	basically	make	an	intelligent	Pac-Man	by	running	reinforcement	learning	and
letting	it	explore	the	values	of	different	decisions	it	can	make	in	different	states	and	then	storing	that
information,	to	very	quickly	make	the	right	decision	given	a	future	state	that	it	sees	in	an	unknown	set	of
conditions.





Q-learning
So,	a	very	specific	implementation	of	reinforcement	learning	is	called	Q-learning,	and	this	formalizes
what	we	just	talked	about	a	little	bit	more:

So	again,	you	start	with	a	set	of	environmental	states	of	the	agent	(Is	there	a	ghost	next	to	me?	Is	there
a	power	pill	in	front	of	me?	Things	like	that.),	we're	going	to	call	that	s.
I	have	a	set	of	possible	actions	that	I	can	take	in	those	states,	we're	going	to	call	that	set	of	actions	a.
In	the	case	of	Pac-Man,	those	possible	actions	are	move	up,	down,	left,	or	right.
Then	we	have	a	value	for	each	state/action	pair	that	we'll	call	Q;	that's	why	we	call	it	Q-learning.
So,	for	each	state,	a	given	set	of	conditions	surrounding	Pac-Man,	a	given	action	will	have	a	value
Q.	So,	moving	up	might	have	a	given	value	Q,	moving	down	might	have	a	negative	Q	value	if	it
means	encountering	a	ghost,	for	example.

So,	we	start	off	with	a	Q	value	of	0	for	every	possible	state	that	Pac-Man	could	be	in.	And,	as	Pac-Man
explores	a	maze,	as	bad	things	happen	to	Pac-Man,	we	reduce	the	Q	value	for	the	state	that	Pac-Man	was
in	at	the	time.	So,	if	Pac-Man	ends	up	getting	eaten	by	a	ghost,	we	penalize	whatever	he	did	in	that	current
state.	As	good	things	happen	to	Pac-Man,	as	he	eats	a	power	pill,	or	eats	a	ghost,	we'll	increase	the	Q
value	for	that	action,	for	the	state	that	he	was	in.	Then,	what	we	can	do	is	use	those	Q	values	to	inform
Pac-Man's	future	choices,	and	sort	of	build	a	little	intelligent	agent	that	can	perform	optimally,	and	make	a
perfect	little	Pac-Man.	From	the	same	image	of	Pac-Man	that	we	saw	just	above,	we	can	further	define
the	current	state	of	Pac-Man	by	defining	that	he	has	a	wall	to	the	West,	empty	space	to	the	North	and	East,
a	ghost	to	the	South.

We	can	look	at	the	actions	he	can	take:	he	can't	actually	move	left	at	all,	but	he	can	move	up,	down,	or
right,	and	we	can	assign	a	value	to	all	those	actions.	By	going	up	or	right,	nothing	really	happens	at	all,
there's	no	power	pill	or	dots	to	consume.	But	if	he	goes	left,	that's	definitely	a	negative	value.	We	can	say
for	the	state	given	by	the	current	conditions	that	Pac-Man	is	surrounded	by,	moving	down	would	be	a
really	bad	choice;	there	should	be	a	negative	Q	value	for	that.	Moving	left	just	can't	be	done	at	all.
Moving	up	or	right	or	staying	neutral,	the	Q	value	would	remain	0	for	those	action	choices	for	that	given
state.

Now,	you	can	also	look	ahead	a	little	bit,	to	make	an	even	more	intelligent	agent.	So,	I'm	actually	two
steps	away	from	getting	a	power	pill	here.	So,	as	Pac-Man	were	to	explore	this	state,	if	I	were	to	hit	the
case	of	eating	that	power	pill	on	the	next	state,	I	could	actually	factor	that	into	the	Q	value	for	the	previous
state.	If	you	just	have	some	sort	of	a	discount	factor,	based	on	how	far	away	you	are	in	time,	how	many
steps	away	you	are,	you	can	factor	that	all	in	together.	So,	that's	a	way	of	actually	building	in	a	little	bit	of
memory	into	the	system.	You	can	"look	ahead"	more	than	one	step	by	using	a	discount	factor	when
computing	Q	(here	s	is	previous	state,	s'	is	current	state):

Q(s,a)	+=	discount	*	(reward(s,a)	+	max(Q(s'))	-	Q(s,a))

So,	the	Q	value	that	I	experience	when	I	consume	that	power	pill	might	actually	give	a	boost	to	the
previous	Q	values	that	I	encountered	along	the	way.	So,	that's	a	way	to	make	Q-learning	even	better.





The	exploration	problem
One	problem	that	we	have	in	reinforcement	learning	is	the	exploration	problem.	How	do	I	make	sure	that	I
efficiently	cover	all	the	different	states	and	actions	within	those	states	during	the	exploration	phase?





The	simple	approach
One	simple	approach	is	to	always	choose	the	action	for	a	given	state	with	the	highest	Q	value	that	I've
computed	so	far,	and	if	there's	a	tie,	just	choose	at	random.	So,	initially	all	of	my	Q	values	might	be	0,	and
I'll	just	pick	actions	at	random	at	first.

As	I	start	to	gain	information	about	better	Q	values	for	given	actions	and	given	states,	I'll	start	to	use	those
as	I	go.	But,	that	ends	up	being	pretty	inefficient,	and	I	can	actually	miss	a	lot	of	paths	that	way	if	I	just	tie
myself	into	this	rigid	algorithm	of	always	choosing	the	best	Q	value	that	I've	computed	thus	far.

	





The	better	way
So,	a	better	way	is	to	introduce	a	little	bit	of	random	variation	into	my	actions	as	I'm	exploring.	So,	we
call	that	an	epsilon	term.	So,	suppose	we	have	some	value,	that	I	roll	the	dice,	I	have	a	random	number.	If
it	ends	up	being	less	than	this	epsilon	value,	I	don't	actually	follow	the	highest	Q	value;	I	don't	do	the	thing
that	makes	sense,	I	just	take	a	path	at	random	to	try	it	out,	and	see	what	happens.	That	actually	lets	me
explore	a	much	wider	range	of	possibilities,	a	much	wider	range	of	actions,	for	a	wider	range	of	states
more	efficiently	during	that	exploration	stage.

So,	what	we	just	did	can	be	described	in	very	fancy	mathematical	terms,	but	you	know	conceptually	it's
pretty	simple.

	





Fancy	words
I	explore	some	set	of	actions	that	I	can	take	for	a	given	set	of	states,	I	use	that	to	inform	the	rewards
associated	with	a	given	action	for	a	given	set	of	states,	and	after	that	exploration	is	done	I	can	use	that
information,	those	Q	values,	to	intelligently	navigate	through	an	entirely	new	maze	for	example.

This	can	also	be	called	a	Markov	decision	process.	So	again,	a	lot	of	data	science	is	just	assigning	fancy,
intimidating	names	to	simple	concepts,	and	there's	a	ton	of	that	in	reinforcement	learning.

	





Markov	decision	process
So,	if	you	look	up	the	definition	of	Markov	decision	processes,	it	is	"a	mathematical	framework	for
modeling	decision	making	in	situations	where	outcomes	are	partly	random	and	partly	under	the	control	of
a	decision	maker".

Decision	making:	What	action	do	we	take	given	a	set	of	possibilities	for	a	given	state?
In	situations	where	outcomes	are	partly	random:	Hmm,	kind	of	like	our	random	exploration	there.
Partly	under	the	control	of	a	decision	maker:	The	decision	maker	is	our	Q	values	that	we
computed.

So,	MDPs,	Markov	decision	processes,	are	a	fancy	way	of	describing	our	exploration	algorithm	that	we
just	described	for	reinforcement	learning.	The	notation	is	even	similar,	states	are	still	described	as	s,	and
s'	is	the	next	state	that	we	encounter.	We	have	state	transition	functions	that	are	defined	as	Pa	for	a	given
state	of	s	and	s'.	We	have	our	Q	values,	which	are	basically	represented	as	a	reward	function,	an	Ra	value
for	a	given	s	and	s'.	So,	moving	from	one	state	to	another	has	a	given	reward	associated	with	it,	and
moving	from	one	state	to	another	is	defined	by	a	state	transition	function:

States	are	still	described	as	s	and	s''
State	transition	functions	are	described	as	Pa(s,s')
Our	Q	values	are	described	as	a	reward	function	Ra(s,s')

So	again,	describing	what	we	just	did,	only	a	mathematical	notation,	and	a	fancier	sounding	word,
Markov	decision	processes.	And,	if	you	want	to	sound	even	smarter,	you	can	also	call	a	Markov	decision
process	by	another	name:	a	discrete	time	stochastic	control	process.	That	sounds	intelligent!	But	the
concept	itself	is	the	same	thing	that	we	just	described.

	





Dynamic	programming
So,	even	more	fancy	words:	dynamic	programming	can	be	used	to	describe	what	we	just	did	as	well.
Wow!	That	sounds	like	artificial	intelligence,	computers	programming	themselves,	Terminator	2,	Skynet
stuff.	But	no,	it's	just	what	we	just	did.	If	you	look	up	the	definition	of	dynamic	programming,	it	is	a
method	for	solving	a	complex	problem	by	breaking	it	down	into	a	collection	of	simpler	subproblems,
solving	each	of	those	subproblems	just	once,	and	storing	their	solutions	ideally,	using	a	memory-based
data	structure.

The	next	time	the	same	subproblem	occurs,	instead	of	recomputing	its	solution,	one	simply	looks	up	the
previously	computed	solution	thereby	saving	computation	time	at	the	expense	of	a	(hopefully)	modest
expenditure	in	storage	space:

A	method	for	solving	a	complex	problem:	Same	as	creating	an	intelligent	Pac-Man,	that's	a	pretty
complicated	end	result.
By	breaking	it	down	into	a	collection	of	simpler	subproblems:	So,	for	example,	what	is	the
optimal	action	to	take	for	a	given	state	that	Pac-Man	might	be	in.	There	are	many	different	states	Pac-
Man	could	find	himself	in,	but	each	one	of	those	states	represents	a	simpler	subproblem,	where
there's	a	limited	set	of	choices	I	can	make,	and	there's	one	right	answer	for	the	best	move	to	make.
Storing	their	solutions:	Those	solutions	being	the	Q	values	that	I	associated	with	each	possible
action	at	each	state.
Ideally,	using	a	memory-based	data	structure:	Well,	of	course	I	need	to	store	those	Q	values	and
associate	them	with	states	somehow,	right?
The	next	time	the	same	subproblem	occurs:	The	next	time	Pac-Man	is	in	a	given	state	that	I	have	a
set	of	Q	values	for.
Instead	of	recomputing	its	solution,	one	simply	looks	up	the	previously	computed	solution:	The
Q	value	I	already	have	from	the	exploration	stage.
Thereby	saving	computation	time	at	the	expense	of	a	modest	expenditure	in	storage	space:
That's	exactly	what	we	just	did	with	reinforcement	learning.

We	have	a	complicated	exploration	phase	that	finds	the	optimal	rewards	associated	with	each	action	for	a
given	state.	Once	we	have	that	table	of	the	right	action	to	take	for	a	given	state,	we	can	very	quickly	use
that	to	make	our	Pac-Man	move	in	an	optimal	manner	in	a	whole	new	maze	that	he	hasn't	seen	before.	So,
reinforcement	learning	is	also	a	form	of	dynamic	programming.	Wow!

To	recap,	you	can	make	an	intelligent	Pac-Man	agent	by	just	having	it	semi-randomly	explore	different
choices	of	movement	given	different	conditions,	where	those	choices	are	actions	and	those	conditions	are
states.	We	keep	track	of	the	reward	or	penalty	associated	with	each	action	or	state	as	we	go,	and	we	can
actually	discount,	going	back	multiple	steps	if	you	want	to	make	it	even	better.

Then	we	store	those	Q	values	that	we	end	up	associating	with	each	state,	and	we	can	use	that	to	inform	its
future	choices.	So	we	can	go	into	a	whole	new	maze,	and	have	a	really	smart	Pac-Man	that	can	avoid	the
ghosts	and	eat	them	up	pretty	effectively,	all	on	its	own.	It's	a	pretty	simple	concept,	very	powerful	though.
You	can	also	say	that	you	understand	a	bunch	of	fancy	terms	because	it's	all	called	the	same	thing.	Q-
learning,	reinforcement	learning,	Markov	decision	processes,	dynamic	programming:	all	tied	up	in	the



same	concept.

I	don't	know,	I	think	it's	pretty	cool	that	you	can	actually	make	sort	of	an	artificially	intelligent	Pac-Man
through	such	a	simple	technique,	and	it	really	does	work!	If	you	want	to	go	look	at	it	in	more	detail,
following	are	a	few	examples	you	can	look	at	that	have	one	actual	source	code	you	can	look	at,	and
potentially	play	with,	Python	Markov	Decision	Process	Toolbox:	http://pymdptoolbox.readthedocs.org/en/latest/api/m
dp.html.

There	is	a	Python	Markov	decision	process	toolbox	that	wraps	it	up	in	all	that	terminology	we	talked
about.	There's	an	example	you	can	look	at,	a	working	example	of	the	cat	and	mouse	game,	which	is
similar.	And,	there	is	actually	a	Pac-Man	example	you	can	look	at	online	as	well,	that	ties	in	more
directly	with	what	we	were	talking	about.	Feel	free	to	explore	these	links,	and	learn	even	more	about	it.

And	so	that's	reinforcement	learning.	More	generally,	it's	a	useful	technique	for	building	an	agent	that	can
navigate	its	way	through	a	possible	different	set	of	states	that	have	a	set	of	actions	that	can	be	associated
with	each	state.	So,	we've	talked	about	it	mostly	in	the	context	of	a	maze	game.	But,	you	can	think	more
broadly,	and	you	know	whenever	you	have	a	situation	where	you	need	to	predict	behavior	of	something
given	a	set	of	current	conditions	and	a	set	of	actions	it	can	take.	Reinforcement	learning	and	Q-learning
might	be	a	way	of	doing	it.	So,	keep	that	in	mind!

http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html




Summary
In	this	chapter,	we	saw	one	of	the	simplest	techniques	of	machine	learning	called	k-nearest	neighbors.	We
also	looked	at	an	example	of	KNN	which	predicts	the	rating	for	a	movie.	We	analysed	the	concepts	of
dimensionality	reduction	and	principal	component	analysis	and	saw	an	example	of	PCA,	which	reduced
4D	data	to	two	dimensions	while	still	preserving	its	variance.

Next,	we	learned	the	concept	of	data	warehousing	and	saw	how	using	the	ELT	process	instead	of	ETL
makes	more	sense	today.	We	walked	through	the	concept	of	reinforcement	learning	and	saw	how	it	is	used
behind	the	Pac-Man	game.	Finally,	we	saw	some	fancy	words	used	for	reinforcement	learning	(Q-
learning,	Markov	decision	process,	and	dynamic	learning).	In	the	next	chapter,	we'll	see	how	to	deal	with
real-world	data.

	



	



Dealing	with	Real-World	Data
	

In	this	chapter,	we're	going	to	talk	about	the	challenges	of	dealing	with	real-world	data,	and	some	of	the
quirks	you	might	run	into.	The	chapter	starts	by	talking	about	the	bias-variance	trade-off,	which	is	kind	of
a	more	principled	way	of	talking	about	the	different	ways	you	might	overfit	and	underfit	data,	and	how	it
all	interrelates	with	each	other.	We	then	talk	about	the	k-fold	cross-validation	technique,	which	is	an
important	tool	in	your	chest	to	combat	overfitting,	and	look	at	how	to	implement	it	using	Python.

Next,	we	analyze	the	importance	of	cleaning	your	data	and	normalizing	it	before	actually	applying	any
algorithms	on	it.	We	see	an	example	to	determine	the	most	popular	pages	on	a	website	which	will
demonstrate	the	importance	of	cleaning	data.	The	chapter	also	covers	the	importance	of	remembering	to
normalize	numerical	data.	Finally,	we	look	at	how	to	detect	outliers	and	deal	with	them.

Specifically,	this	chapter	covers	the	following	topics:

Analyzing	the	bias/variance	trade-off
The	concept	of	k-fold	cross-validation	and	its	implementation
The	importance	of	cleaning	and	normalizing	data
An	example	to	determine	the	popular	pages	of	a	website
Normalizing	numerical	data
Detecting	outliers	and	dealing	with	them

	

	





Bias/variance	trade-off
One	of	the	basic	challenges	that	we	face	when	dealing	with	real-world	data	is	overfitting	versus
underfitting	your	regressions	to	that	data,	or	your	models,	or	your	predictions.	When	we	talk	about
underfitting	and	overfitting,	we	can	often	talk	about	that	in	the	context	of	bias	and	variance,	and	the	bias-
variance	trade-off.	So,	let's	talk	about	what	that	means.

So	conceptually,	bias	and	variance	are	pretty	simple.	Bias	is	just	how	far	off	you	are	from	the	correct
values,	that	is,	how	good	are	your	predictions	overall	in	predicting	the	right	overall	value.	If	you	take	the
mean	of	all	your	predictions,	are	they	more	or	less	on	the	right	spot?	Or	are	your	errors	all	consistently
skewed	in	one	direction	or	another?	If	so,	then	your	predictions	are	biased	in	a	certain	direction.

Variance	is	just	a	measure	of	how	spread	out,	how	scattered	your	predictions	are.	So,	if	your	predictions
are	all	over	the	place,	then	that's	high	variance.	But,	if	they're	very	tightly	focused	on	what	the	correct
values	are,	or	even	an	incorrect	value	in	the	case	of	high	bias,	then	your	variance	is	small.

Let's	look	at	some	examples.	Let's	imagine	that	the	following	dartboard	represents	a	bunch	of	predictions
we're	making	where	the	real	value	we're	trying	to	predict	is	in	the	center	of	the	bullseye:

Starting	with	the	dartboard	in	the	upper	left-hand	corner,	you	can	see	that	our	points	are	all	scattered
about	the	center.	So	overall,	you	know	the	mean	error	comes	out	to	be	pretty	close	to	reality.	Our
bias	is	actually	very	low,	because	our	predictions	are	all	around	the	same	correct	point.	However,
we	have	very	high	variance,	because	these	points	are	scattered	about	all	over	the	place.	So,	this	is	an
example	of	low	bias	and	high	variance.
If	we	move	on	to	the	dartboard	in	the	upper	right	corner,	we	see	that	our	points	are	all	consistently
skewed	from	where	they	should	be,	to	the	Northwest.	So	this	is	an	example	of	high	bias	in	our
predictions,	where	they're	consistently	off	by	a	certain	amount.	We	have	low	variance	because
they're	all	clustered	tightly	around	the	wrong	spot,	but	at	least	they're	close	together,	so	we're	being
consistent	in	our	predictions.	That's	low	variance.	But,	the	bias	is	high.	So	again,	this	is	high	bias,
low	variance.
In	the	dartboard	in	the	lower	left	corner,	you	can	see	that	our	predictions	are	scattered	around	the
wrong	mean	point.	So,	we	have	high	bias;	everything	is	skewed	to	some	place	where	it	shouldn't	be.
But	our	variance	is	also	high.	So,	this	is	kind	of	the	worst	of	both	worlds	here;	we	have	high	bias
and	high	variance	in	this	example.
Finally,	in	a	wonderful	perfect	world,	you	would	have	an	example	like	the	lower	right	dartboard,
where	we	have	low	bias,	where	everything	is	centered	around	where	it	should	be,	and	low	variance,



where	things	are	all	clustered	pretty	tightly	around	where	they	should	be.	So,	in	a	perfect	world	that's
what	you	end	up	with.

In	reality,	you	often	need	to	choose	between	bias	and	variance.	It	comes	down	to	over	fitting	Vs
underfitting	your	data.	Let's	take	a	look	at	the	following	example:

	

It's	a	little	bit	of	a	different	way	of	thinking	of	bias	and	variance.	So,	in	the	left	graph,	we	have	a	straight
line,	and	you	can	think	of	that	as	having	very	low	variance,	relative	to	these	observations.	So,	there's	not	a
lot	of	variance	in	this	line,	that	is,	there	is	low	variance.	But	the	bias,	the	error	from	each	individual
point,	is	actually	high.

Now,	contrast	that	to	the	overfitted	data	in	the	graph	at	the	right,	where	we've	kind	of	gone	out	of	our	way
to	fit	the	observations.	The	line	has	high	variance,	but	low	bias,	because	each	individual	point	is	pretty
close	to	where	it	should	be.	So,	this	is	an	example	of	where	we	traded	off	variance	for	bias.

At	the	end	of	the	day,	you're	not	out	to	just	reduce	bias	or	just	reduce	variance,	you	want	to	reduce	error.
That's	what	really	matters,	and	it	turns	out	you	can	express	error	as	a	function	of	bias	and	variance:

Looking	at	this,	error	is	equal	to	bias	squared	plus	variance.	So,	these	things	both	contribute	to	the	overall
error,	with	bias	actually	contributing	more.	But	keep	in	mind,	it's	error	you	really	want	to	minimize,	not
the	bias	or	the	variance	specifically,	and	that	an	overly	complex	model	will	probably	end	up	having	a
high	variance	and	low	bias,	whereas	a	too	simple	model	will	have	low	variance	and	high	bias.	However,
they	could	both	end	up	having	similar	error	terms	at	the	end	of	the	day.	You	just	have	to	find	the	right
happy	medium	of	these	two	things	when	you're	trying	to	fit	your	data.	We'll	talk	about	some	more
principled	ways	of	actually	avoiding	overfitting	in	our	forthcoming	sections.	But,	it's	just	the	concept	of
bias	and	variance	that	I	want	to	get	across,	because	people	do	talk	about	it	and	you're	going	to	be
expected	to	know	what	means.

Now	let's	tie	that	back	to	some	earlier	concepts	in	this	book.	For	example,	in	k-nearest	neighbors	if	we
increase	the	value	of	K,	we	start	to	spread	out	our	neighborhood	that	were	averaging	across	to	a	larger
area.	That	has	the	effect	of	decreasing	variance	because	we're	kind	of	smoothing	things	out	over	a	larger
space,	but	it	might	increase	our	bias	because	we'll	be	picking	up	a	larger	population	that	may	be	less	and
less	relevant	to	the	point	we	started	from.	By	smoothing	out	KNN	over	a	larger	number	of	neighbors,	we
can	decrease	the	variance	because	we're	smoothing	things	out	over	more	values.	But,	we	might	be
introducing	bias	because	we're	introducing	more	and	more	points	that	are	less	than	less	related	to	the
point	we	started	with.



Decision	trees	is	another	example.	We	know	that	a	single	decision	tree	is	prone	to	overfitting,	so	that
might	imply	that	it	has	a	high	variance.	But,	random	forests	seek	to	trade	off	some	of	that	variance	for	bias
reduction,	and	it	does	that	by	having	multiple	trees	that	are	randomly	variant	and	averages	all	their
solutions	together.	It's	like	when	we	average	things	out	by	increasing	K	in	KNN:	we	can	average	out	the
results	of	a	decision	tree	by	using	more	than	one	decision	tree	using	random	forests	similar	idea.

This	is	bias-variance	trade-off.	You	know	the	decision	you	have	to	make	between	how	overall	accurate
your	values	are,	and	how	spread	out	they	are	or	how	tightly	clustered	they	are.	That's	the	bias-variance
trade-off	and	they	both	contribute	to	the	overall	error,	which	is	the	thing	you	really	care	about	minimizing.
So,	keep	those	terms	in	mind!





K-fold	cross-validation	to	avoid	overfitting
Earlier	in	the	book,	we	talked	about	train	and	test	as	a	good	way	of	preventing	overfitting	and	actually
measuring	how	well	your	model	can	perform	on	data	it's	never	seen	before.	We	can	take	that	to	the	next
level	with	a	technique	called	k-fold	cross-validation.	So,	let's	talk	about	this	powerful	tool	in	your
arsenal	for	fighting	overfitting;	k-fold	cross-validation	and	learn	how	that	works.

To	recall	from	train/test,	the	idea	was	that	we	split	all	of	our	data	that	we're	building	a	machine	learning
model	based	off	of	into	two	segments:	a	training	dataset,	and	a	test	dataset.	The	idea	is	that	we	train	our
model	only	using	the	data	in	our	training	dataset,	and	then	we	evaluate	its	performance	using	the	data	that
we	reserved	for	our	test	dataset.	That	prevents	us	from	overfitting	to	the	data	that	we	have	because	we're
testing	the	model	against	data	that	it's	never	seen	before.

However,	train/test	still	has	its	limitations:	you	could	still	end	up	overfitting	to	your	specific	train/test
split.	Maybe	your	training	dataset	isn't	really	representative	of	the	entire	dataset,	and	too	much	stuff	ended
up	in	your	training	dataset	that	skews	things.	So,	that's	where	k-fold	cross-validation	comes	in,	it	takes
train/test	and	kicks	it	up	a	notch.

The	idea,	although	it	sounds	complicated,	is	fairly	simple:

1.	 Instead	of	dividing	our	data	into	two	buckets,	one	for	training	and	one	for	testing,	we	divide	it	into	K
buckets.

2.	 We	reserve	one	of	those	buckets	for	testing	purposes,	for	evaluating	the	results	of	our	model.
3.	 We	train	our	model	against	the	remaining	buckets	that	we	have,	K-1,	and	then	we	take	our	test	dataset

and	use	that	to	evaluate	how	well	our	model	did	amongst	all	of	those	different	training	datasets.
4.	 We	average	those	resulting	error	metrics,	that	is,	those	r-squared	values,	together	to	get	a	final	error

metric	from	k-fold	cross-validation.

That's	all	it	is.	It	is	a	more	robust	way	of	doing	train/test,	and	that's	one	way	of	doing	it.

Now,	you	might	think	to	yourself	well,	what	if	I'm	overfitting	to	that	one	test	dataset	that	I	reserved?	I'm
still	using	the	same	test	dataset	for	every	one	of	those	training	datasets.	What	if	that	test	dataset	isn't	really
representative	of	things	either?

There	are	variations	of	k-fold	cross-validation	that	will	randomize	that	as	well.	So,	you	could	randomly
pick	what	the	training	dataset	is	as	well	each	time	around,	and	just	keep	randomly	assigning	things	to
different	buckets	and	measuring	the	results.	But	usually,	when	people	talk	about	k-fold	cross-validation,
they're	talking	about	this	specific	technique	where	you	reserve	one	bucket	for	testing,	and	the	remaining
buckets	for	training,	and	you	evaluate	all	of	your	training	datasets	against	the	test	dataset	when	you	build	a
model	for	each	one.





Example	of	k-fold	cross-validation	using	scikit-
learn
Fortunately,	scikit-learn	makes	this	really	easy	to	do,	and	it's	even	easier	than	doing	normal	train/test!	It's
extremely	simple	to	do	k-fold	cross-validation,	so	you	may	as	well	just	do	it.

Now,	the	way	this	all	works	in	practice	is	you	will	have	a	model	that	you're	trying	to	tune,	and	you	will
have	different	variations	of	that	model,	different	parameters	you	might	want	to	tweak	on	it,	right?

Like,	for	example,	the	degree	of	polynomial	for	a	polynomial	fit.	So,	the	idea	is	to	try	different	values	of
your	model,	different	variations,	measure	them	all	using	k-fold	cross-validation,	and	find	the	one	that
minimizes	error	against	your	test	dataset.	That's	kind	of	your	sweet	spot	there.	In	practice,	you	want	to	use
k-fold	cross-validation	to	measure	the	accuracy	of	your	model	against	a	test	dataset,	and	just	keep	refining
that	model,	keep	trying	different	values	within	it,	keep	trying	different	variations	of	that	model	or	maybe
even	different	models	entirely,	until	you	find	the	technique	that	reduces	error	the	most,	using	k-fold	cross
validation.

Let's	go	dive	into	an	example	and	see	how	it	works.	We're	going	to	apply	this	to	our	Iris	dataset	again,
revisiting	SVC,	and	we'll	play	with	k-fold	cross-validation	and	see	how	simple	it	is.	Let's	actually	put	k-
fold	cross-validation	and	train/test	into	practice	here	using	some	real	Python	code.	You'll	see	it's	actually
very	easy	to	use,	which	is	a	good	thing	because	this	is	a	technique	you	should	be	using	to	measure	the
accuracy,	the	effectiveness	of	your	models	in	supervised	learning.

Please	go	ahead	and	open	up	the	KFoldCrossValidation.ipynb	and	follow	along	if	you	will.	We're	going	to	look
at	the	Iris	dataset	again;	remember	we	introduced	this	when	we	talk	about	dimensionality	reduction?

Just	to	refresh	your	memory,	the	Iris	dataset	contains	a	set	of	150	Iris	flower	measurements,	where	each
flower	has	a	length	and	width	of	its	petal,	and	a	length	and	width	of	its	sepal.	We	also	know	which	one	of
3	different	species	of	Iris	each	flower	belongs	to.	The	challenge	here	is	to	create	a	model	that	can
successfully	predict	the	species	of	an	Iris	flower,	just	given	the	length	and	width	of	its	petal	and	sepal.	So,
let's	go	ahead	and	do	that.

We're	going	to	use	the	SVC	model.	If	you	remember	back	again,	that's	just	a	way	of	classifying	data	that's
pretty	robust.	There's	a	section	on	that	if	you	need	to	go	and	refresh	your	memory:

import	numpy	as	np	

from	sklearn	import	cross_validation	

from	sklearn	import	datasets	

from	sklearn	import	svm	

	

iris	=	datasets.load_iris()	

#	Split	the	iris	data	into	train/test	data	sets	with	

#40%	reserved	for	testing	

X_train,	X_test,	y_train,	y_test	=	cross_validation.train_test_split(iris.data,	

																																				iris.target,	test_size=0.4,	random_state=0)	

	

#	Build	an	SVC	model	for	predicting	iris	classifications	

#using	training	data	

clf	=	svm.SVC(kernel='linear',	C=1).fit(X_train,	y_train)	

	



#	Now	measure	its	performance	with	the	test	data	

clf.score(X_test,	y_test)	

What	we	do	is	use	the	cross_validation	library	from	scikit-learn,	and	we	start	by	just	doing	a	conventional
train	test	split,	just	a	single	train/test	split,	and	see	how	that	will	work.

To	do	that	we	have	a	train_test_split()	function	that	makes	it	pretty	easy.	So,	the	way	this	works	is	we	feed
into	train_test_split()	a	set	of	feature	data.	iris.data	just	contains	all	the	actual	measurements	of	each
flower.	iris.target	is	basically	the	thing	we're	trying	to	predict.

In	this	case,	it	contains	all	the	species	for	each	flower.	test_size	says	what	percentage	do	we	want	to	train
versus	test.	So,	0.4	means	we're	going	to	extract	40%	of	that	data	randomly	for	testing	purposes,	and	use
60%	for	training	purposes.	What	this	gives	us	back	is	4	datasets,	basically,	a	training	dataset	and	a	test
dataset	for	both	the	feature	data	and	the	target	data.	So,	X_train	ends	up	containing	60%	of	our	Iris
measurements,	and	X_test	contains	40%	of	the	measurements	used	for	testing	the	results	of	our	model.
y_train	and	y_test	contain	the	actual	species	for	each	one	of	those	segments.

Then	after	that	we	go	ahead	and	build	an	SVC	model	for	predicting	Iris	species	given	their	measurements,
and	we	build	that	only	using	the	training	data.	We	fit	this	SVC	model,	using	a	linear	kernel,	using	only	the
training	feature	data,	and	the	training	species	data,	that	is,	target	data.	We	call	that	model	clf.	Then,	we
call	the	score()	function	on	clf	to	just	measure	its	performance	against	our	test	dataset.	So,	we	score	this
model	against	the	test	data	we	reserved	for	the	Iris	measurements,	and	the	test	Iris	species,	and	see	how
well	it	does:

It	turns	out	it	does	really	well!	Over	96%	of	the	time,	our	model	is	able	to	correctly	predict	the	species	of
an	Iris	that	it	had	never	seen	before,	just	based	on	the	measurements	of	that	Iris.	So	that's	pretty	cool!

But,	this	is	a	fairly	small	dataset,	about	150	flowers	if	I	remember	right.	So,	we're	only	using	60%	of	150
flowers	for	training	and	only	40%	of	150	flowers	for	testing.	These	are	still	fairly	small	numbers,	so	we
could	still	be	overfitting	to	our	specific	train/test	split	that	we	made.	So,	let's	use	k-fold	cross-validation
to	protect	against	that.	It	turns	out	that	using	k-fold	cross-validation,	even	though	it's	a	more	robust
technique,	is	actually	even	easier	to	use	than	train/test.	So,	that's	pretty	cool!	So,	let's	see	how	that	works:

#	We	give	cross_val_score	a	model,	the	entire	data	set	and	its	"real"	values,	and	the	number	of	folds:	

scores	=	cross_validation.cross_val_score(clf,	iris.data,	iris.target,	cv=5)	

	

#	Print	the	accuracy	for	each	fold:	

print	scores	

	

#	And	the	mean	accuracy	of	all	5	folds:	

print	scores.mean()	

We	have	a	model	already,	the	SVC	model	that	we	defined	for	this	prediction,	and	all	you	need	to	do	is
call	cross_val_score()	on	the	cross_validation	package.	So,	you	pass	in	this	function	a	model	of	a	given	type
(clf),	the	entire	dataset	that	you	have	of	all	of	the	measurements,	that	is,	all	of	my	feature	data	(iris.data)
and	all	of	my	target	data	(all	of	the	species),	iris.target.

I	want	cv=5	which	means	it's	actually	going	to	use	5	different	training	datasets	while	reserving	1	for	testing.



Basically,	it's	going	to	run	it	5	times,	and	that's	all	we	need	to	do.	That	will	automatically	evaluate	our
model	against	the	entire	dataset,	split	up	five	different	ways,	and	give	us	back	the	individual	results.

If	we	print	back	the	output	of	that,	it	gives	us	back	a	list	of	the	actual	error	metric	from	each	one	of	those
iterations,	that	is,	each	one	of	those	folds.	We	can	average	those	together	to	get	an	overall	error	metric
based	on	k-fold	cross-validation:

When	we	do	this	over	5	folds,	we	can	see	that	our	results	are	even	better	than	we	thought!	98%	accuracy.
So	that's	pretty	cool!	In	fact,	in	a	couple	of	the	runs	we	had	perfect	accuracy.	So	that's	pretty	amazing	stuff.

Now	let's	see	if	we	can	do	even	better.	We	used	a	linear	kernel	before,	what	if	we	used	a	polynomial
kernel	and	got	even	fancier?	Will	that	be	overfitting	or	will	it	actually	better	fit	the	data	that	we	have?
That	kind	of	depends	on	whether	there's	actually	a	linear	relationship	or	polynomial	relationship	between
these	petal	measurements	and	the	actual	species	or	not.	So,	let's	try	that	out:

clf	=	svm.SVC(kernel='poly',	C=1).fit(X_train,	y_train)

scores	=	cross_validation.cross_val_score(clf,	iris.data,	iris.target,	cv=5)

print	scores

print	scores.mean()

We'll	just	run	this	all	again,	using	the	same	technique.	But	this	time,	we're	using	a	polynomial	kernel.	We'll
fit	that	to	our	training	dataset,	and	it	doesn't	really	matter	where	you	fit	to	in	this	case,	because
cross_val_score()	will	just	keep	re-running	it	for	you:

It	turns	out	that	when	we	use	a	polynomial	fit,	we	end	up	with	an	overall	score	that's	even	lower	than	our
original	run.	So,	this	tells	us	that	the	polynomial	kernel	is	probably	overfitting.	When	we	use	k-fold	cross-
validation	it	reveals	an	actual	lower	score	than	with	our	linear	kernel.

The	important	point	here	is	that	if	we	had	just	used	a	single	train/test	split,	we	wouldn't	have	realized	that
we	were	overfitting.	We	would	have	actually	gotten	the	same	result	if	we	just	did	a	single	train/test	split
here	as	we	did	on	the	linear	kernel.	So,	we	might	inadvertently	be	overfitting	our	data	there,	and	not	have
even	known	it	had	we	not	use	k-fold	cross-validation.	So,	this	is	a	good	example	of	where	k-fold	comes
to	the	rescue,	and	warns	you	of	overfitting,	where	a	single	train/test	split	might	not	have	caught	that.	So,
keep	that	in	your	tool	chest.

If	you	want	to	play	around	with	this	some	more,	go	ahead	and	try	different	degrees.	So,	you	can	actually
specify	a	different	number	of	degrees.	The	default	is	3	degrees	for	the	polynomial	kernel,	but	you	can	try	a
different	one,	you	can	try	two.

Does	that	do	better?	If	you	go	down	to	one,	that	degrades	basically	to	a	linear	kernel,	right?	So,	maybe
there	is	still	a	polynomial	relationship	and	maybe	it's	only	a	second	degree	polynomial.	Try	it	out	and	see
what	you	get	back.	That's	k-fold	cross-validation.	As	you	can	see,	it's	very	easy	to	use	thanks	to	scikit-
learn.	It's	an	important	way	to	measure	how	good	your	model	is	in	a	very	robust	manner.





Data	cleaning	and	normalisation
Now,	this	is	one	of	the	simplest,	but	yet	it	might	be	the	most	important	section	in	this	whole	book.	We're
going	to	talk	about	cleaning	your	input	data,	which	you're	going	to	spend	a	lot	of	your	time	doing.

How	well	you	clean	your	input	data	and	understand	your	raw	input	data	is	going	to	have	a	huge	impact	on
the	quality	of	your	results	-	maybe	even	more	so	than	what	model	you	choose	or	how	well	you	tune	your
models.	So,	pay	attention;	this	is	important	stuff!

Cleaning	your	raw	input	data	is	often	the	most	important,	and	time-consuming,	part	of
your	job	as	a	data	scientist!

Let's	talk	about	an	inconvenient	truth	of	data	science,	and	that's	that	you	spend	most	of	your	time	actually
just	cleaning	and	preparing	your	data,	and	actually	relatively	little	of	it	analyzing	it	and	trying	out	new
algorithms.	It's	not	quite	as	glamorous	as	people	might	make	it	out	to	be	all	the	time.	But,	this	is	an
extremely	important	thing	to	pay	attention	to.

There	are	a	lot	of	different	things	that	you	might	find	in	raw	data.	Data	that	comes	in	to	you,	just	raw	data,
is	going	to	be	very	dirty,	it's	going	to	be	polluted	in	many	different	ways.	If	you	don't	deal	with	it	it's	going
to	skew	your	results,	and	it	will	ultimately	end	up	in	your	business	making	the	wrong	decisions.

If	it	comes	back	that	you	made	a	mistake	where	you	ingested	a	bunch	of	bad	data	and	didn't	account	for	it,
didn't	clean	that	data	up,	and	what	you	told	your	business	was	to	do	something	based	on	those	results	that
later	turn	out	to	be	completely	wrong,	you're	going	to	be	in	a	lot	of	trouble!	So,	pay	attention!

There	are	a	lot	of	different	kinds	of	problems	and	data	that	you	need	to	watch	out	for:

Outliers:	So	maybe	you	have	people	that	are	behaving	kind	of	strangely	in	your	data,	and	when	you
dig	into	them,	they	turn	out	to	be	data	you	shouldn't	be	looking	at	the	in	first	place.	A	good	example
would	be	if	you're	looking	at	web	log	data,	and	you	see	one	session	ID	that	keeps	coming	back	over,
and	over,	and	over	again,	and	it	keeps	doing	something	at	a	ridiculous	rate	that	a	human	could	never
do.	What	you're	probably	seeing	there	is	a	robot,	a	script	that's	being	run	somewhere	to	actually
scrape	your	website.	It	might	even	be	some	sort	of	malicious	attack.	But	at	any	rate,	you	don't	want
that	behavior	data	informing	your	models	that	are	meant	to	predict	the	behavior	of	real	human	beings
using	your	website.	So,	watching	for	outliers	is	one	way	to	identify	types	of	data	that	you	might	want
to	strip	out	of	your	model	when	you're	building	it.
Missing	data:	What	do	you	do	when	data's	just	not	there?	Going	back	to	the	example	of	a	web	log,
you	might	have	a	referrer	in	that	line,	or	you	might	not.	What	do	you	do	if	it's	not	there?	Do	you
create	a	new	classification	for	missing,	or	not	specified?	Or	do	you	throw	that	line	out	entirely?	You
have	to	think	about	what	the	right	thing	to	do	is	there.
Malicious	data:	There	might	be	people	trying	to	game	your	system,	there	might	be	people	trying	to
cheat	the	system,	and	you	don't	want	those	people	getting	away	with	it.	Let's	say	you're	making	a
recommender	system.	There	could	be	people	out	there	trying	to	fabricate	behavior	data	in	order	to
promote	their	new	item,	right?	So,	you	need	to	be	on	the	lookout	for	that	sort	of	thing,	and	make	sure



that	you're	identifying	the	shilling	attacks,	or	other	types	of	attacks	on	your	input	data,	and	filtering
them	out	from	results	and	don't	let	them	win.
Erroneous	data:	What	if	there's	a	software	bug	somewhere	in	some	system	that's	just	writing	out	the
wrong	values	in	some	set	of	situations?	It	can	happen.	Unfortunately,	there's	no	good	way	for	you	to
know	about	that.	But,	if	you	see	data	that	just	looks	fishy	or	the	results	don't	make	sense	to	you,
digging	in	deeply	enough	can	sometimes	uncover	an	underlying	bug	that's	causing	the	wrong	data	to
be	written	in	the	first	place.	Maybe	things	aren't	being	combined	properly	at	some	point.	Maybe
sessions	aren't	being	held	throughout	the	entire	session.	People	might	be	dropping	their	session	ID
and	getting	new	session	IDs	as	they	go	through	a	website,	for	example.
Irrelevant	data:	A	very	simple	one	here.	Maybe	you're	only	interested	in	data	from	New	York	City
people,	or	something	for	some	reason.	In	that	case	all	the	data	from	people	from	the	rest	of	the	world
is	irrelevant	to	what	you're	trying	to	find	out.	The	first	thing	you	want	to	do	is	just	throw	all	that	data
that	away	and	restrict	your	data,	whittle	it	down	to	the	data	that	you	actually	care	about.
Inconsistent	data:	This	is	a	huge	problem.	For	example,	in	addresses,	people	can	write	the	same
address	in	many	different	ways:	they	might	abbreviate	street	or	they	might	not	abbreviate	street,	they
might	not	put	street	at	the	end	of	the	street	name	at	all.	They	might	combine	lines	together	in	different
ways,	they	might	spell	things	differently,	they	might	use	a	zip	code	in	the	US	or	zip	plus	4	code	in	the
US,	they	might	have	a	country	on	it,	they	might	not	have	a	country	on	it.	You	need	to	somehow	figure
out	what	are	the	variations	that	you	see	and	how	can	you	normalize	them	all	together.
Maybe	I'm	looking	at	data	about	movies.	A	movie	might	have	different	names	in	different	countries,
or	a	book	might	have	different	names	in	different	countries,	but	they	mean	the	same	thing.	So,	you
need	to	look	out	for	these	things	where	you	need	to	normalize	your	data,	where	the	same	data	can	be
represented	in	many	different	ways,	and	you	need	to	combine	them	together	in	order	to	get	the	correct
results.
Formatting:	This	can	also	be	an	issue;	things	can	be	inconsistently	formatted.	Take	the	example	of
dates:	in	the	US	we	always	do	month,	day,	year	(MM/DD/YY),	but	in	other	countries	they	might	do
day,	month,	year	(DD/MM/YY),	who	knows.	You	need	to	be	aware	of	these	formatting	differences.
Maybe	phone	numbers	have	parentheses	around	the	area	code,	maybe	they	don't;	maybe	they	have
dashes	between	each	section	of	the	numbers,	maybe	they	don't;	maybe	social	security	numbers	have
dashes,	maybe	they	don't.	These	are	all	things	that	you	need	to	watch	out	for,	and	you	need	to	make
sure	that	variations	in	formatting	don't	get	treated	as	different	entities,	or	different	classifications
during	your	processing.

So,	there	are	lots	of	things	to	watch	out	for,	and	the	previous	list	names	just	the	main	ones	to	be	aware	of.
Remember:	garbage	in,	garbage	out.	Your	model	is	only	as	good	as	the	data	that	you	give	to	it,	and	this	is
extremely,	extremely	true!	You	can	have	a	very	simple	model	that	performs	very	well	if	you	give	it	a	large
amount	of	clean	data,	and	it	could	actually	outperform	a	complex	model	on	a	more	dirty	dataset.

Therefore,	making	sure	that	you	have	enough	data,	and	high-quality	data	is	often	most	of	the	battle.	You'd
be	surprised	how	simple	some	of	the	most	successful	algorithms	used	in	the	real	world	are.	They're	only
successful	by	virtue	of	the	quality	of	the	data	going	into	it,	and	the	amount	of	data	going	into	it.	You	don't
always	need	fancy	techniques	to	get	good	results.	Often,	the	quality	and	quantity	of	your	data	counts	just	as
much	as	anything	else.

Always	question	your	results!	You	don't	want	to	go	back	and	look	for	anomalies	in	your	input	data	only



when	you	get	a	result	that	you	don't	like.	That	will	introduce	an	unintentional	bias	into	your	results	where
you're	letting	results	that	you	like,	or	expect,	go	through	unquestioned,	right?	You	want	to	question	things
all	the	time	to	make	sure	that	you're	always	looking	out	for	these	things	because	even	if	you	find	a	result
you	like,	if	it	turns	out	to	be	wrong,	it's	still	wrong,	it's	still	going	to	be	informing	your	company	in	the
wrong	direction.	That	could	come	back	to	bite	you	later	on.

As	an	example,	I	have	a	website	called	No-Hate	News.	It's	non-profit,	so	I'm	not	trying	to	make	any
money	by	telling	you	about	it.	Let's	say	I	just	want	to	find	the	most	popular	pages	on	this	website	that	I
own.	That	sounds	like	a	pretty	simple	problem,	doesn't	it?	I	should	just	be	able	to	go	through	my	web
logs,	and	count	up	how	many	hits	each	page	has,	and	sort	them,	right?	How	hard	can	it	be?!	Well,	turns	out
it's	really	hard!	So,	let's	dive	into	this	example	and	see	why	it's	difficult,	and	see	some	examples	of	real-
world	data	cleanup	that	has	to	happen.



<strong>logPath	=	"E:\\sundog-consult\\Packt\\DataScience\\access_log.txt"	</strong>





Applying	a	regular	expression	on	the	web	log
So,	I	went	and	got	the	following	little	snippet	of	code	off	of	the	Internet	that	will	parse	an	Apache	access
log	line	into	a	bunch	of	fields:

format_pat=	re.compile(	

				r"(?P<host>[\d\.]+)\s"	

				r"(?P<identity>\S*)\s"	

				r"(?P<user>\S*)\s"	

				r"\[(?P<time>.*?)\]\s"	

				r'"(?P<request>.*?)"\s'	

				r"(?P<status>\d+)\s"	

				r"(?P<bytes>\S*)\s"	

				r'"(?P<referer>.*?)"\s'	

				r'"(?P<user_agent>.*?)"\s*'	

)	

This	code	contains	things	like	the	host,	the	user,	the	time,	the	actual	page	request,	the	status,	the	referrer,
user_agent	(meaning	which	browser	actually	was	used	to	view	this	page).	It	builds	up	what's	called	a
regular	expression,	and	we're	using	the	re	library	to	use	it.	That's	basically	a	very	powerful	language	for
doing	pattern	matching	on	a	large	string.	So,	we	can	actually	apply	this	regular	expression	to	each	line	of
our	access	log,	and	automatically	group	the	bits	of	information	in	that	access	log	line	into	these	different
fields.	Let's	go	ahead	and	run	this.

The	obvious	thing	to	do	here,	let's	just	whip	up	a	little	script	that	counts	up	each	URL	that	we	encounter
that	was	requested,	and	keeps	count	of	how	many	times	it	was	requested.	Then	we	can	sort	that	list	and
get	our	top	pages,	right?	Sounds	simple	enough!

So,	we're	going	to	construct	a	little	Python	dictionary	called	URLCounts.	We're	going	to	open	up	our	log	file,
and	for	each	line,	we're	going	to	apply	our	regular	expression.	If	it	actually	comes	back	with	a	successful
match	for	the	pattern	that	we're	trying	to	match,	we'll	say,	Okay	this	looks	like	a	decent	line	in	our	access
log.

Let's	extract	the	request	field	out	of	it,	which	is	the	actual	HTTP	request,	the	page	which	is	actually	being
requested	by	the	browser.	We're	going	to	split	that	up	into	its	three	components:	it	consists	of	an	action,
like	get	or	post;	the	actual	URL	being	requested;	and	the	protocol	being	used.	Given	that	information	split
out,	we	can	then	just	see	if	that	URL	already	exists	in	my	dictionary.	If	so,	I	will	increment	the	count	of
how	many	times	that	URL	has	been	encountered	by	1;	otherwise,	I'll	introduce	a	new	dictionary	entry	for
that	URL	and	initialize	it	to	the	value	of	1.	I	do	that	for	every	line	in	the	log,	sort	the	results	in	reverse
order,	numerically,	and	print	them	out:

URLCounts	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												request	=	access['request']

												(action,	URL,	protocol)	=	request.split()

												if	URLCounts.has_key(URL):

																URLCounts[URL]	=	URLCounts[URL]	+	1

												else:

																URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:



				print	result	+	":	"	+	str(URLCounts[result])

So,	let's	go	ahead	and	run	that:

Oops!	We	end	up	with	this	big	old	error	here.	It's	telling	us	that,	we	need	more	than	1	value	to	unpack.	So
apparently,	we're	getting	some	requests	fields	that	don't	contain	an	action,	a	URL,	and	a	protocol	that	they
contain	something	else.

Let's	see	what's	going	on	there!	So,	if	we	print	out	all	the	requests	that	don't	contain	three	items,	we'll	see
what's	actually	showing	up.	So,	what	we're	going	to	do	here	is	a	similar	little	snippet	of	code,	but	we're
going	to	actually	do	that	split	on	the	request	field,	and	print	out	cases	where	we	don't	get	the	expected
three	fields.

URLCounts	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												request	=	access['request']

												fields	=	request.split()

												if	(len(fields)	!=	3):

																print	fields

Let's	see	what's	actually	in	there:

So,	we	have	a	bunch	of	empty	fields.	That's	our	first	problem.	But,	then	we	have	the	first	field	that's	full
just	garbage.	Who	knows	where	that	came	from,	but	it's	clearly	erroneous	data.	Okay,	fine,	let's	modify
our	script.





Modification	one	-	filtering	the	request	field
We'll	actually	just	throw	out	any	lines	that	don't	have	the	expected	3	fields	in	the	request.	That	seems	like
a	legitimate	thing	to	do,	because	this	does	in	fact	have	completely	useless	data	inside	of	it,	it's	not	like
we're	missing	out	on	anything	here	by	doing	that.	So,	we'll	modify	our	script	to	do	that.	We've	introduced
an	if	(len(fields)	==	3)	line	before	it	actually	tries	to	process	it.	We'll	run	that:	URLCounts	=	{}

with	open(logPath,	"r")	as	f:
for	line	in	(l.rstrip()	for	l	in	f):
match=	format_pat.match(line)
if	match:
access	=	match.groupdict()
request	=	access['request']
fields	=	request.split()
if	(len(fields)	==	3):
URL	=	fields[1]
if	URLCounts.has_key(URL):
URLCounts[URL]	=	URLCounts[URL]	+	1
else:
URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:
print	result	+	":	"	+	str(URLCounts[result])

Hey,	we	got	a	result!

But	this	doesn't	really	look	like	the	top	pages	on	my	website.	Remember,	this	is	a	news	site.	So,	we're
getting	a	bunch	of	PHP	file	hits,	that's	Perl	scripts.	What's	going	on	there?	Our	top	result	is	this	xmlrpc.php
script,	and	then	WP_login.php,	followed	by	the	homepage.	So,	not	very	useful.	Then	there	is	robots.txt,	then	a



bunch	of	XML	files.

You	know	when	I	looked	into	this	later	on,	it	turned	out	that	my	site	was	actually	under	a	malicious	attack;
someone	was	trying	to	break	into	it.	This	xmlrpc.php	script	was	the	way	they	were	trying	to	guess	at	my
passwords,	and	they	were	trying	to	log	in	using	the	login	script.	Fortunately,	I	shut	them	down	before	they
could	actually	get	through	to	this	website.

This	was	an	example	of	malicious	data	being	introduced	into	my	data	stream	that	I	have	to	filter	out.	So,
by	looking	at	that,	we	can	see	that	not	only	was	that	malicious	attack	looking	at	PHP	files,	but	it	was	also
trying	to	execute	stuff.	It	wasn't	just	doing	a	get	request,	it	was	doing	a	post	request	on	the	script	to
actually	try	to	execute	code	on	my	website.





Modification	two	-	filtering	post	requests
Now,	I	know	that	the	data	that	I	care	about,	you	know	in	the	spirit	of	the	thing	I'm	trying	to	figure	out	is,
people	getting	web	pages	from	my	website.	So,	a	legitimate	thing	for	me	to	do	is	to	filter	out	anything
that's	not	a	get	request,	out	of	these	logs.	So,	let's	do	that	next.	We're	going	to	check	again	if	we	have	three
fields	in	our	request	field,	and	then	we're	also	going	to	check	if	the	action	is	get.	If	it's	not,	we're	just
going	to	ignore	that	line	entirely:

URLCounts	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												request	=	access['request']

												fields	=	request.split()

												if	(len(fields)	==	3):

																(action,	URL,	protocol)	=	fields

																if	(action	==	'GET'):

																				if	URLCounts.has_key(URL):

																								URLCounts[URL]	=	URLCounts[URL]	+	1

																				else:

																								URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:

				print	result	+	":	"	+	str(URLCounts[result])

We	should	be	getting	closer	to	what	we	want	now,	the	following	is	the	output	of	the	preceding	code:

Yeah,	this	is	starting	to	look	more	reasonable.	But,	it	still	doesn't	really	pass	a	sanity	check.	This	is	a
news	website;	people	go	to	it	to	read	news.	Are	they	really	reading	my	little	blog	on	it	that	just	has	a
couple	of	articles?	I	don't	think	so!	That	seems	a	little	bit	fishy.	So,	let's	dive	in	a	little	bit,	and	see	who's
actually	looking	at	those	blog	pages.	If	you	were	to	actually	go	into	that	file	and	examine	it	by	hand,	you
would	see	that	a	lot	of	these	blog	requests	don't	actually	have	any	user	agent	on	them.	They	just	have	a
user	agent	of	-,	which	is	highly	unusual:



If	a	real	human	being	with	a	real	browser	was	trying	to	get	this	page,	it	would	say	something	like	Mozilla,
or	Internet	Explorer,	or	Chrome	or	something	like	that.	So,	it	seems	that	these	requests	are	coming	from
some	sort	of	a	scraper.	Again,	potentially	malicious	traffic	that's	not	identifying	who	it	is.





Modification	three	-	checking	the	user	agents
Maybe,	we	should	be	looking	at	the	UserAgents	too,	to	see	if	these	are	actual	humans	making	requests,	or
not.	Let's	go	ahead	and	print	out	all	the	different	UserAgents	that	we're	encountering.	So,	in	the	same	spirit
of	the	code	that	actually	summed	up	the	different	URLs	we	were	seeing,	we	can	look	at	all	the	different
UserAgents	that	we	were	seeing,	and	sort	them	by	the	most	popular	user_agent	strings	in	this	log:

UserAgents	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												agent	=	access['user_agent']

												if	UserAgents.has_key(agent):

																UserAgents[agent]	=	UserAgents[agent]	+	1

												else:

																UserAgents[agent]	=	1

results	=	sorted(UserAgents,	key=lambda	i:	int(UserAgents[i]),	reverse=True)

for	result	in	results:

				print	result	+	":	"	+	str(UserAgents[result])

We	get	the	following	result:

You	can	see	most	of	it	looks	legitimate.	So,	if	it's	a	scraper,	and	in	this	case	it	actually	was	a	malicious
attack	but	they	were	actually	pretending	to	be	a	legitimate	browser.	But	this	dash	user_agent	shows	up	a	lot
too.	So,	I	don't	know	what	that	is,	but	I	know	that	it	isn't	an	actual	browser.

The	other	thing	I'm	seeing	is	a	bunch	of	traffic	from	spiders,	from	web	crawlers.	So,	there	is	Baidu	which
is	a	search	engine	in	China,	there	is	Googlebot	just	crawling	the	page.	I	think	I	saw	Yandex	in	there	too,	a
Russian	search	engine.	So,	our	data	is	being	polluted	by	a	lot	of	crawlers	that	are	just	trying	to	mine	our
website	for	search	engine	purposes.	Again,	that	traffic	shouldn't	count	toward	the	intended	purpose	of	my
analysis,	of	seeing	what	pages	these	actual	human	beings	are	looking	at	on	my	website.	These	are	all
automated	scripts.





Filtering	the	activity	of	spiders/robots
Alright,	so	this	gets	a	little	bit	tricky.	There's	no	real	good	way	of	identifying	spiders	or	robots	just	based
on	the	user	string	alone.	But	we	can	at	least	take	a	legitimate	crack	at	it,	and	filter	out	anything	that	has	the
word	"bot"	in	it,	or	anything	from	my	caching	plugin	that	might	be	requesting	pages	in	advance	as	well.
We'll	also	strip	out	our	friend	single	dash.	So,	we	will	once	again	refine	our	script	to,	in	addition	to
everything	else,	strip	out	any	UserAgents	that	look	fishy:

URLCounts	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												agent	=	access['user_agent']

												if	(not('bot'	in	agent	or	'spider'	in	agent	or	

																				'Bot'	in	agent	or	'Spider'	in	agent	or

																				'W3	Total	Cache'	in	agent	or	agent	=='-')):

																request	=	access['request']

																fields	=	request.split()

																if	(len(fields)	==	3):

																				(action,	URL,	protocol)	=	fields

																				if	(action	==	'GET'):

																								if	URLCounts.has_key(URL):

																												URLCounts[URL]	=	URLCounts[URL]	+	1

																								else:

																												URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:

				print	result	+	":	"	+	str(URLCounts[result])

URLCounts	=	{}

with	open(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	l	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												agent	=	access['user_agent']

												if	(not('bot'	in	agent	or	'spider'	in	agent	or	

																				'Bot'	in	agent	or	'Spider'	in	agent	or

																				'W3	Total	Cache'	in	agent	or	agent	=='-')):

																request	=	access['request']

																fields	=	request.split()

																if	(len(fields)	==	3):

																				(action,	URL,	protocol)	=	fields

																				if	(URL.endswith("/")):

																								if	(action	==	'GET'):

																												if	URLCounts.has_key(URL):

																																URLCounts[URL]	=	URLCounts[URL]	+	1

																												else:

																																URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:

				print	result	+	":	"	+	str(URLCounts[result])

What	do	we	get?



Alright,	so	here	we	go!	This	is	starting	to	look	more	reasonable	for	the	first	two	entries,	the	homepage	is
most	popular,	which	would	be	expected.	Orlando	headlines	is	also	popular,	because	I	use	this	website
more	than	anybody	else,	and	I	live	in	Orlando.	But	after	that,	we	get	a	bunch	of	stuff	that	aren't	webpages
at	all:	a	bunch	of	scripts,	a	bunch	of	CSS	files.	Those	aren't	web	pages.





Modification	four	-	applying	website-specific
filters
I	can	just	apply	some	knowledge	about	my	site,	where	I	happen	to	know	that	all	the	legitimate	pages	on
my	site	just	end	with	a	slash	in	their	URL.	So,	let's	go	ahead	and	modify	this	again,	to	strip	out	anything
that	doesn't	end	with	a	slash:

URLCounts	=	{}

with	open	(logPath,	"r")	as	f:

				for	line	in	(l.rstrip()	for	1	in	f):

								match=	format_pat.match(line)

								if	match:

												access	=	match.groupdict()

												agent	=	access['user_agent']

												if	(not('bot'	in	agent	or	'spider'	in	agent	or

																				'Bot'	in	agent	or	'Spider'	in	agent	or

																				'W3	Total	Cache'	in	agent	or	agent	=='-')):

																request	=	access['request']

																fields	=	request.split()

																if	(len(fields)	==	3):

																				(action,	URL,	protocol)	=	fields

																				if	(URL.endswith("/")):

																								if	(action	==	'GET'):

																												if	URLCounts.has_key(URL):

																																URLCounts[URL]	=	URLCounts[URL]	+	1

																												else:

																																URLCounts[URL]	=	1

results	=	sorted(URLCounts,	key=lambda	i:	int(URLCounts[i]),	reverse=True)

for	result	in	results[:20]:

				print	result	+	":	"	+	str(URLCounts[result])

Let's	run	that!

Finally,	we're	getting	some	results	that	seem	to	make	sense!	So,	it	looks	like,	that	the	top	page	requested
from	actual	human	beings	on	my	little	No-Hate	News	site	is	the	homepage,	followed	by	orlando-headlines,
followed	by	world	news,	followed	by	the	comics,	then	the	weather,	and	the	about	screen.	So,	this	is
starting	to	look	more	legitimate.



If	you	were	to	dig	even	deeper	though,	you'd	see	that	there	are	still	problems	with	this	analysis.	For
example,	those	feed	pages	are	still	coming	from	robots	just	trying	to	get	RSS	data	from	my	website.	So,
this	is	a	great	parable	in	how	a	seemingly	simple	analysis	requires	a	huge	amount	of	pre-processing	and
cleaning	of	the	source	data	before	you	get	results	that	make	any	sense.

Again,	make	sure	the	things	you're	doing	to	clean	your	data	along	the	way	are	principled,	and	you're	not
just	cherry-picking	problems	that	don't	match	with	your	preconceived	notions.	So,	always	question	your
results,	always	look	at	your	source	data,	and	look	for	weird	things	that	are	in	it.





Activity	for	web	log	data
Alright,	if	you	want	to	mess	with	this	some	more	you	can	solve	that	feed	problem.	Go	ahead	and	strip	out
things	that	include	feed	because	we	know	that's	not	a	real	web	page,	just	to	get	some	familiarity	with	the
code.	Or,	go	look	at	the	log	a	little	bit	more	closely,	gain	some	understanding	as	to	where	those	feed	pages
are	actually	coming	from.

Maybe	there's	an	even	better	and	more	robust	way	of	identifying	that	traffic	as	a	larger	class.	So,	feel	free
to	mess	around	with	that.	But	I	hope	you	learned	your	lesson:	data	cleaning	-	hugely	important	and	it's
going	to	take	a	lot	of	your	time!

So,	it's	pretty	surprising	how	hard	it	was	to	get	some	reasonable	results	on	a	simple	question	like	"What
are	the	top	viewed	pages	on	my	website?"	You	can	imagine	if	that	much	work	had	to	go	into	cleaning	the
data	for	such	a	simple	problem,	think	about	all	the	nuanced	ways	that	dirty	data	might	actually	impact	the
results	of	more	complex	problems,	and	complex	algorithms.

It's	very	important	to	understand	your	source	data,	look	at	it,	look	at	a	representative	sample	of	it,	make
sure	you	understand	what's	coming	into	your	system.	Always	question	your	results	and	tie	it	back	to	the
original	source	data	to	see	where	questionable	results	are	coming	from.





Normalizing	numerical	data
This	is	a	very	quick	section:	I	just	want	to	remind	you	about	the	importance	of	normalizing	your	data,
making	sure	that	your	various	input	feature	data	is	on	the	same	scale,	and	is	comparable.	And,	sometimes
it	matters,	and	sometimes	it	doesn't.	But,	you	just	have	to	be	cognizant	of	when	it	does.	Just	keep	that	in
the	back	of	your	head	because	sometimes	it	will	affect	the	quality	of	your	results	if	you	don't.

So,	sometimes	models	will	be	based	on	several	different	numerical	attributes.	If	you	remember
multivariant	models,	we	might	have	different	attributes	of	a	car	that	we're	looking	at,	and	they	might	not
be	directly	comparable	measurements.	Or,	for	example,	if	we're	looking	at	relationships	between	ages
and	incomes,	ages	might	range	from	0	to	100,	but	incomes	in	dollars	might	range	from	0	to	billions,	and
depending	on	the	currency	it	could	be	an	even	larger	range!	Some	models	are	okay	with	that.

If	you're	doing	a	regression,	usually	that's	not	a	big	deal.	But,	other	models	don't	perform	so	well	unless
those	values	are	scaled	down	first	to	a	common	scale.	If	you're	not	careful,	you	can	end	up	with	some
attributes	counting	more	than	others.	Maybe	the	income	would	end	up	counting	much	more	than	the	age,	if
you	were	trying	to	treat	those	two	values	as	comparable	values	in	your	model.

So	this	can	introduce	also	a	bias	in	the	attributes,	which	can	also	be	a	problem.	Maybe	one	set	of	your
data	is	skewed,	you	know,	sometimes	you	need	to	normalize	things	versus	the	actual	range	seen	for	that	set
of	values	and	not	just	to	a	0	to	whatever	the	maximum	is	scale.	There's	no	set	rule	as	to	when	you	should
and	shouldn't	do	this	sort	of	normalization.	All	I	can	say	is	always	read	the	documentation	for	whatever
technique	you're	using.

So,	for	example,	in	scikit-learn	their	PCA	implementation	has	a	whiten	option	that	will	automatically
normalize	your	data	for	you.	You	should	probably	use	that.	It	also	has	some	preprocessing	modules
available	that	will	normalize	and	scale	things	for	you	automatically	as	well.

Be	aware	too	of	textual	data	that	should	actually	be	represented	numerically,	or	ordinally.	If	you	have	yes
or	no	data	you	might	need	to	convert	that	to	1	or	0	and	do	that	in	a	consistent	matter.	So	again,	just	read	the
documentation.	Most	techniques	do	work	fine	with	raw,	un-normalized	data,	but	before	you	start	using	a
new	technique	for	the	first	time,	just	read	the	documentation	and	understand	whether	or	not	the	inputs
should	be	scaled	or	normalized	or	whitened	first.	If	so,	scikit-learn	will	probably	make	it	very	easy	for
you	to	do	so,	you	just	have	to	remember	to	do	it!	Don't	forget	to	rescale	your	results	when	you're	done	if
you	are	scaling	the	input	data.

If	you	want	to	be	able	to	interpret	the	results	you	get,	sometimes	you	need	to	scale	them	back	up	to	their
original	range	after	you're	done.	If	you	are	scaling	things	and	maybe	even	biasing	them	towards	a	certain
amount	before	you	input	them	into	a	model,	make	sure	that	you	unscale	them	and	unbias	them	before	you
actually	present	those	results	to	somebody.	Or	else	they	won't	make	any	sense!	And	just	a	little	reminder,
a	little	bit	of	a	parable	if	you	will,	always	check	to	see	if	you	should	normalize	or	whiten	your	data	before
you	pass	it	into	a	given	model.

No	exercise	associated	with	this	section;	it's	just	something	I	want	you	to	remember.	I'm	just	trying	to
drive	the	point	home.	Some	algorithms	require	whitening,	or	normalization,	some	don't.	So,	always	read



the	documentation!	If	you	do	need	to	normalize	the	data	going	into	an	algorithm	it	will	usually	tell	you	so,
and	it	will	make	it	very	easy	to	do	so.	Please	just	be	aware	of	that!





Detecting	outliers
A	common	problem	with	real-world	data	is	outliers.	You'll	always	have	some	strange	users,	or	some
strange	agents	that	are	polluting	your	data,	that	act	abnormally	and	atypically	from	the	typical	user.	They
might	be	legitimate	outliers;	they	might	be	caused	by	real	people	and	not	by	some	sort	of	malicious	traffic,
or	fake	data.	So	sometimes,	it's	appropriate	to	remove	them,	sometimes	it	isn't.	Make	sure	you	make	that
decision	responsibly.	So,	let's	dive	into	some	examples	of	dealing	with	outliers.

For	example,	if	I'm	doing	collaborative	filtering,	and	I'm	trying	to	make	movie	recommendations	or
something	like	that,	you	might	have	a	few	power	users	that	have	watched	every	movie	ever	made,	and
rated	every	movie	ever	made.	They	could	end	up	having	an	inordinate	influence	on	the	recommendations
for	everybody	else.

You	don't	really	want	a	handful	of	people	to	have	that	much	power	in	your	system.	So,	that	might	be	an
example	where	it	would	be	a	legitimate	thing	to	filter	out	an	outlier,	and	identify	them	by	how	many
ratings	they've	actually	put	into	the	system.	Or,	maybe	an	outlier	would	be	someone	who	doesn't	have
enough	ratings.

We	might	be	looking	at	web	log	data,	like	we	saw	in	our	example	earlier	when	we	were	doing	data
cleaning,	outliers	could	be	telling	you	that	there's	something	very	wrong	with	your	data	to	begin	with.	It
could	be	malicious	traffic,	it	could	be	bots,	or	other	agents	that	should	be	discarded	that	don't	represent
actual	human	beings	that	you're	trying	to	model.

If	someone	really	wanted	the	mean	average	income	in	the	United	States	(and	not	the	median),	you
shouldn't	just	throw	out	Donald	Trump	because	you	don't	like	him.	You	know	the	fact	is,	his	billions	of
dollars	are	going	to	push	that	mean	amount	up,	even	if	it	doesn't	budge	the	median.	So,	don't	fudge	your
numbers	by	throwing	out	outliers.	But	throw	out	outliers	if	it's	not	consistent	with	what	you're	trying	to
model	in	the	first	place.

Now,	how	do	we	identify	outliers?	Well,	remember	our	old	friend	standard	deviation?	We	covered	that
very	early	in	this	book.	It's	a	very	useful	tool	for	detecting	outliers.	You	can,	in	a	very	principled	matter,
compute	the	standard	deviation	of	a	dataset	that	should	have	a	more	or	less	normal	distribution.	If	you	see
a	data	point	that's	outside	of	one	or	two	standard	deviations,	there	you	have	an	outlier.

Remember,	we	talked	earlier	too	about	the	box	and	whisker	diagrams	too,	and	those	also	have	a	built-in
way	of	detecting	and	visualizing	outliers.	Those	diagrams	define	outliers	as	lying	outside	1.5	the
interquartile	range.

What	multiple	do	you	choose?	Well,	you	kind	of	have	to	use	common	sense,	you	know,	there's	no	hard	and
fast	rule	as	to	what	is	an	outlier.	You	have	to	look	at	your	data	and	kind	of	eyeball	it,	look	at	the
distribution,	look	at	the	histogram.	See	if	there's	actual	things	that	stick	out	to	you	as	obvious	outliers,	and
understand	what	they	are	before	you	just	throw	them	away.





Dealing	with	outliers
So,	let's	take	some	example	code,	and	see	how	you	might	handle	outliers	in	practice.	Let's	mess	around
with	some	outliers.	It's	a	pretty	simple	section.	A	little	bit	of	review	actually.	If	you	want	to	follow	along,
we're	in	Outliers.ipynb.	So,	go	ahead	and	open	that	up	if	you'd	like:

import	numpy	as	np

incomes	=	np.random.normal(27000,	15000,	10000)

incomes	=	np.append(incomes,	[1000000000])

import	matplotlib.pyplot	as	plt

plt.hist(incomes,	50)

plt.show()

We	did	something	very	similar,	very	early	in	the	book,	where	we	created	a	fake	histogram	of	income
distribution	in	the	United	States.	What	we're	going	to	do	is	start	off	with	a	normal	distribution	of	incomes
here	that	are	have	a	mean	of	$27,000	per	year,	with	a	standard	deviation	of	15,000.	I'm	going	to	create
10,000	fake	Americans	that	have	an	income	in	that	distribution.	This	is	totally	made-up	data,	by	the	way,
although	it's	not	that	far	off	from	reality.

Then,	I'm	going	to	stick	in	an	outlier	-	call	it	Donald	Trump,	who	has	a	billion	dollars.	We're	going	to
stick	this	guy	in	at	the	end	of	our	dataset.	So,	we	have	a	normally	distributed	dataset	around	$27,000,	and
then	we're	going	to	stick	in	Donald	Trump	at	the	end.

We'll	go	ahead	and	plot	that	as	a	histogram:

Wow!	That's	not	very	helpful!	We	have	the	entire	normal	distribution	of	everyone	else	in	the	country
squeezed	into	one	bucket	of	the	histogram.	On	the	other	hand,	we	have	Donald	Trump	out	at	the	right	side
screwing	up	the	whole	thing	at	a	billion	dollars.

The	other	problem	too	is	that	if	I'm	trying	to	answer	the	question	how	much	money	does	the	typical
American	make.	If	I	take	the	mean	to	try	and	figure	that	out,	it's	not	going	to	be	a	very	good,	useful
number:

incomes.mean	()



The	output	of	the	preceding	code	is	as	follows:

126892.66469341301

Donald	Trump	has	pushed	that	number	up	all	by	himself	to	$126,000	and	some	odd	of	change,	when	I
know	that	the	real	mean	of	my	normally	distributed	data	that	excludes	Donald	Trump	is	only	$27,000.	So,
the	right	thing	to	do	there	would	be	to	use	the	median	instead	of	the	mean.

But,	let's	say	we	had	to	use	the	mean	for	some	reason,	and	the	right	way	to	deal	with	this	would	be	to
exclude	these	outliers	like	Donald	Trump.	So,	we	need	to	figure	out	how	do	we	identify	these	people.
Well,	you	could	just	pick	some	arbitrary	cutoff,	and	say,	"I'm	going	to	throw	out	all	the	billionaires",	but
that's	not	a	very	principled	thing	to	do.	Where	did	1	billion	come	from?

It's	just	some	accident	of	how	we	count	numbers.	So,	a	better	thing	to	do	would	be	to	actually	measure	the
standard	deviation	of	your	dataset,	and	identify	outliers	as	being	some	multiple	of	a	standard	deviation
away	from	the	mean.

So,	following	is	a	little	function	that	I	wrote	that	does	just	that.	It's	called	reject_outliers():

def	reject_outliers(data):	

				u	=	np.median(data)	

				s	=	np.std(data)	

				filtered	=	[e	for	e	in	data	if	(u	-	2	*	s	<	e	<	u	+	2	*	s)]	

				return	filtered	

	

filtered	=	reject_outliers(incomes)	

	

plt.hist(filtered,	50)	

plt.show()	

It	takes	in	a	list	of	data	and	finds	the	median.	It	also	finds	the	standard	deviation	of	that	dataset.	So,	I	filter
that	out,	so	I	only	preserve	data	points	that	are	within	two	standard	deviations	of	the	median	for	my	data.
So,	I	can	use	this	handy	dandy	reject_outliers()	function	on	my	income	data,	to	actually	strip	out	weird
outliers	automatically:

Sure	enough,	it	works!	I	get	a	much	prettier	graph	now	that	excludes	Donald	Trump	and	focuses	in	on	the
more	typical	dataset	here	in	the	center.	So,	pretty	cool	stuff!

So,	that's	one	example	of	identifying	outliers,	and	automatically	removing	them,	or	dealing	with	them
however	you	see	fit.	Remember,	always	do	this	in	a	principled	manner.	Don't	just	throw	out	outliers
because	they're	inconvenient.	Understand	where	they're	coming	from,	and	how	they	actually	affect	the



thing	you're	trying	to	measure	in	spirit.

By	the	way,	our	mean	is	also	much	more	meaningful	now;	much	closer	to	27,000	that	it	should	be,	now
that	we've	gotten	rid	of	that	outlier.





Activity	for	outliers
So,	if	you	want	to	play	around	with	this,	you	know	just	fiddle	around	with	it	like	I	normally	ask	you	to	do.
Try	different	multiples	of	the	standard	deviation,	try	adding	in	more	outliers,	try	adding	in	outliers	that
aren't	quite	as	outlier-ish	as	Donald	Trump.	You	know,	just	fabricate	some	extra	fake	data	there	and	play
around	with	it,	see	if	you	can	identify	those	people	successfully.

So	there	you	have	it!	Outliers;	pretty	simple	concept.	So,	that's	an	example	of	identifying	outliers	by
looking	at	standard	deviations,	and	just	looking	at	the	number	of	standard	deviations	from	the	mean	or
median	that	you	care	about.	Median	is	probably	a	better	choice	actually,	given	that	the	outliers	might	be
skewing	the	mean	in	and	of	themselves,	right?	So,	by	using	the	standard	deviation,	that's	a	good	way	of
identifying	outliers	in	a	more	principled	manner	than	just	picking	some	arbitrary	cutoff.	Again,	you	need
to	decide	what	the	right	thing	to	do	is	with	those	outliers.	What	are	you	actually	trying	to	measure?	Is	it
appropriate	to	actually	discard	them	or	not?	So,	keep	that	in	your	head!

	





Summary
In	this	chapter,	we	talked	about	the	importance	of	striking	a	balance	between	bias	and	variance	and
minimizing	error.	Next,	we	saw	the	concept	of	k-fold	cross-validation	and	how	to	implement	it	in	Python
to	prevent	overfitting.	We	learned	the	importance	of	cleaning	data	and	normalizing	it	before	processing	it.
We	then	saw	an	example	to	determine	the	popular	pages	of	a	website.	In	Chapter	9,	Apache	Spark	-
Machine	Learning	on	Big	Data	we'll	learn	machine	learning	on	big	data	using	Apache	Spark.

	



	



Apache	Spark	-	Machine	Learning	on	Big	Data
	

So	far	in	this	book	we've	talked	about	a	lot	of	general	data	mining	and	machine	learning	techniques	that
you	can	use	in	your	data	science	career,	but	they've	all	been	running	on	your	desktop.	As	such,	you	can
only	run	as	much	data	as	a	single	machine	can	process	using	technologies	such	as	Python	and	scikit-learn.

Now,	everyone	talks	about	big	data,	and	odds	are	you	might	be	working	for	a	company	that	does	in	fact
have	big	data	to	process.	Big	data	meaning	that	you	can't	actually	control	it	all,	you	can't	actually	wrangle
it	all	on	just	one	system.	You	need	to	actually	compute	it	using	the	resources	of	an	entire	cloud,	a	cluster
of	computing	resources.	And	that's	where	Apache	Spark	comes	in.	Apache	Spark	is	a	very	powerful	tool
for	managing	big	data,	and	doing	machine	learning	on	large	Datasets.	By	the	end	of	the	chapter,	you	will
have	an	in-depth	knowledge	of	the	following	topics:

Installing	and	working	with	Spark
Resilient	Distributed	Datasets	(RDDs)
The	MLlib	(Machine	Learning	Library)
Decision	Trees	in	Spark
K-Means	Clustering	in	Spark

	

	





Installing	Spark
In	this	section,	I'm	going	to	get	you	set	up	using	Apache	Spark,	and	show	you	some	examples	of	actually
using	Apache	Spark	to	solve	some	of	the	same	problems	that	we	solved	using	a	single	computer	in	the
past	in	this	book.	The	first	thing	we	need	to	do	is	get	Spark	set	up	on	your	computer.	So,	we're	going	to
walk	you	through	how	to	do	that	in	the	next	couple	of	sections.	It's	pretty	straightforward	stuff,	but	there
are	a	few	gotchas.	So,	don't	just	skip	these	sections;	there	are	a	few	things	you	need	to	pay	special
attention	to	get	Spark	running	successfully,	especially	on	a	Windows	system.	Let's	get	Apache	Spark	set
up	on	your	system,	so	you	can	actually	dive	in	and	start	playing	around	with	it.

We're	going	to	be	running	this	just	on	your	own	desktop	for	now.	But,	the	same	programs	that	we're	going
to	write	in	this	chapter	could	be	run	on	an	actual	Hadoop	cluster.	So,	you	can	take	these	scripts	that	we're
writing	and	running	locally	on	your	desktop	in	Spark	standalone	mode,	and	actually	run	them	from	the
master	node	of	an	actual	Hadoop	cluster,	then	let	it	scale	up	to	the	entire	power	of	a	Hadoop	cluster	and
process	massive	Datasets	that	way.	Even	though	we're	going	to	set	things	up	to	run	locally	on	your	own
computer,	keep	in	mind	that	these	same	concepts	will	scale	up	to	running	on	a	cluster	as	well.

	





Installing	Spark	on	Windows
Getting	Spark	installed	on	Windows	involves	several	steps	that	we'll	walk	you	through	here.	I'm	just
going	to	assume	that	you're	on	Windows	because	most	people	use	this	book	at	home.	We'll	talk	a	little	bit
about	dealing	with	other	operating	systems	in	a	moment.	If	you're	already	familiar	with	installing	stuff	and
dealing	with	environment	variables	on	your	computer,	then	you	can	just	take	the	following	little	cheat
sheet	and	go	off	and	do	it.	If	you're	not	so	familiar	with	Windows	internals,	I	will	walk	you	through	it	one
step	at	a	time	in	the	upcoming	sections.	Here	are	the	quick	steps	for	those	Windows	pros:

1.	 Install	a	JDK:	You	need	to	first	install	a	JDK,	that's	a	Java	Development	Kit.	You	can	just	go	to
Sun's	website	and	download	that	and	install	it	if	you	need	to.	We	need	the	JDK	because,	even	though
we're	going	to	be	developing	in	Python	during	this	course,	that	gets	translated	under	the	hood	to
Scala	code,	which	is	what	Spark	is	developed	in	natively.	And,	Scala,	in	turn,	runs	on	top	of	the	Java
interpreter.	So,	in	order	to	run	Python	code,	you	need	a	Scala	system,	which	will	be	installed	by
default	as	part	of	Spark.	Also,	we	need	Java,	or	more	specifically	Java's	interpreter,	to	actually	run
that	Scala	code.	It's	like	a	technology	layer	cake.

2.	 Install	Python:	Obviously	you're	going	to	need	Python,	but	if	you've	gotten	to	this	point	in	the	book,
you	should	already	have	a	Python	environment	set	up,	hopefully	with	Enthought	Canopy.	So,	we	can
skip	this	step.

3.	 Install	a	prebuilt	version	of	Spark	for	Hadoop:	Fortunately,	the	Apache	website	makes	available
prebuilt	versions	of	Spark	that	will	just	run	out	of	the	box	that	are	precompiled	for	the	latest	Hadoop
version.	You	don't	have	to	build	anything,	you	can	just	download	that	to	your	computer	and	stick	it	in
the	right	place	and	be	good	to	go	for	the	most	part.

4.	 Create	a	conf/log4j.properties	file:	We	have	a	few	configuration	things	to	take	care	of.	One	thing
we	want	to	do	is	adjust	our	warning	level	so	we	don't	get	a	bunch	of	warning	spam	when	we	run	our
jobs.	We'll	walk	through	how	to	do	that.	Basically,	you	need	to	rename	one	of	the	properties	files,
and	then	adjust	the	error	setting	within	it.

5.	 Add	a	SPARK_HOME	environment	variable:	Next,	we	need	to	set	up	some	environment	variables
to	make	sure	that	you	can	actually	run	Spark	from	any	path	that	you	might	have.	We're	going	to	add	a
SPARK_HOME	environment	variable	pointing	to	where	you	installed	Spark,	and	then	we	will	add
%SPARK_HOME%\bin	to	your	system	path,	so	that	when	you	run	Spark	Submit,	or	PySpark	or	whatever
Spark	command	you	need,	Windows	will	know	where	to	find	it.

6.	 Set	a	HADOOP_HOME	variable:	On	Windows	there's	one	more	thing	we	need	to	do,	we	need	to
set	a	HADOOP_HOME	variable	as	well	because	it's	going	to	expect	to	find	one	little	bit	of	Hadoop,	even	if
you're	not	using	Hadoop	on	your	standalone	system.

7.	 Install	winutils.exe:	Finally,	we	need	to	install	a	file	called	winutils.exe.	There's	a	link	to	winutils.exe
within	the	resources	for	this	book,	so	you	can	get	that	there.

If	you	want	to	walk	through	the	steps	in	more	detail,	you	can	refer	to	the	upcoming	sections.

	





Installing	Spark	on	other	operating	systems
A	quick	note	on	installing	Spark	on	other	operating	systems:	the	same	steps	will	basically	apply	on	them
too.	The	main	difference	is	going	to	be	in	how	you	set	environment	variables	on	your	system,	in	such	a
way	that	they	will	automatically	be	applied	whenever	you	log	in.	That's	going	to	vary	from	OS	to	OS.
macOS	does	it	differently	from	various	flavors	of	Linux,	so	you're	going	to	have	to	be	at	least	a	little	bit
familiar	with	using	a	Unix	terminal	command	prompt,	and	how	to	manipulate	your	environment	to	do	that.
But	most	macOS	or	Linux	users	who	are	doing	development	already	have	those	fundamentals	under	their
belt.	And	of	course,	you're	not	going	to	need	winutils.exe	if	you're	not	on	Windows.	So,	those	are	the	main
differences	for	installing	on	different	OSes.

	





Installing	the	Java	Development	Kit
For	installing	the	Java	Development	Kit,	go	back	to	the	browser,	open	a	new	tab,	and	just	search	for	jdk
(short	for	Java	Development	Kit).	This	will	bring	you	to	the	Oracle	site,	from	where	you	can	download
Java:

On	the	Oracle	website,	click	on	JDK	DOWNLOAD.	Now,	click	on	Accept	License	Agreement	and	then
you	can	select	the	download	option	for	your	operating	system:



For	me,	that's	going	to	be	Windows	64-bit,	and	a	wait	for	198	MB	of	goodness	to	download:

Once	the	download	is	finished,	locate	the	installer	and	start	it	running.	Note	that	we	can't	just	accept	the
default	settings	in	the	installer	on	Windows	here.	So,	this	is	a	Windows-specific	workaround,	but	as	of	the
writing	of	this	book,	the	current	version	of	Spark	is	2.1.1	and	it	turns	out	there's	an	issue	with	Spark	2.1.1
with	Java	on	Windows.	The	issue	is	that	if	you've	installed	Java	to	a	path	that	has	a	space	in	it,	it	doesn't
work,	so	we	need	to	make	sure	that	Java	is	installed	to	a	path	that	does	not	have	a	space	in	it.	This	means
that	you	can't	skip	this	step	even	if	you	have	Java	installed	already,	so	let	me	show	you	how	to	do	that.	On
the	installer,	click	on	Next,	and	you	will	see,	as	in	the	following	screen,	that	it	wants	to	install	by	default
to	the	C:\Program	Files\Java\jdk	path,	whatever	the	version	is:



The	space	in	the	Program	Files	path	is	going	to	cause	trouble,	so	let's	click	on	the	Change...	button	and
install	to	c:\jdk,	a	nice	simple	path,	easy	to	remember,	and	with	no	spaces	in	it:

Now,	it	also	wants	to	install	the	Java	Runtime	environment,	so	just	to	be	safe,	I'm	also	going	to	install	that
to	a	path	with	no	spaces.



At	the	second	step	of	the	JDK	installation,	we	should	have	this	showing	on	our	screen:

I	will	change	that	destination	folder	as	well,	and	we	will	make	a	new	folder	called	C:\jre	for	that:

Alright,	successfully	installed.	Woohoo!

Now,	you'll	need	to	remember	the	path	that	we	installed	the	JDK	into,	which	in	our	case	was	C:\jdk.	We
still	have	a	few	more	steps	to	go	here.	Next,	we	need	to	install	Spark	itself.





Installing	Spark
Let's	get	back	to	a	new	browser	tab	here,	head	to	spark.apache.org,	and	click	on	the	Download	Spark	button:

Now,	we	have	used	Spark	2.1.1	in	this	book,	but	anything	beyond	2.0	should	work	just	fine.

Make	sure	you	get	a	prebuilt	version,	and	select	the	Direct	Download	option	so	all	these	defaults	are
perfectly	fine.	Go	ahead	and	click	on	the	link	next	to	instruction	number	4	to	download	that	package.

Now,	it	downloads	a	TGZ	(Tar	in	GZip)	file,	which	you	might	not	be	familiar	with.	Windows	is	kind	of
an	afterthought	with	Spark	quite	honestly	because	on	Windows,	you're	not	going	to	have	a	built-in	utility
for	actually	decompressing	TGZ	files.	This	means	that	you	might	need	to	install	one,	if	you	don't	have	one
already.	The	one	I	use	is	called	WinRAR,	and	you	can	pick	that	up	from	www.rarlab.com.	Go	to	the
Downloads	page	if	you	need	it,	and	download	the	installer	for	WinRAR	32-bit	or	64-bit,	depending	on
your	operating	system.	Install	WinRAR	as	normal,	and	that	will	allow	you	to	actually	decompress	TGZ

http://spark.apache.org
http://www.rarlab.com


files	on	Windows:

So,	let's	go	ahead	and	decompress	the	TGZ	files.	I'm	going	to	open	up	my	Downloads	folder	to	find	the	Spark
archive	that	we	downloaded,	and	let's	go	ahead	and	right-click	on	that	archive	and	extract	it	to	a	folder	of
my	choosing	-	I'm	just	going	to	put	it	in	my	Downloads	folder	for	now.	Again,	WinRAR	is	doing	this	for	me	at
this	point:



So,	I	should	now	have	a	folder	in	my	Downloads	folder	associated	with	that	package.	Let's	open	that	up	and
there	is	Spark	itself.	You	should	see	something	like	the	folder	content	shown	below.	So,	you	need	to
install	that	in	some	place	that	you	can	remember:

You	don't	want	to	leave	it	in	your	Downloads	folder	obviously,	so	let's	go	ahead	and	open	up	a	new	file
explorer	window	here.	I	go	to	my	C	drive	and	create	a	new	folder,	and	let's	just	call	it	spark.	So,	my	Spark
installation	is	going	to	live	in	C:\spark.	Again,	nice	and	easy	to	remember.	Open	that	folder.	Now,	I	go	back
to	my	downloaded	spark	folder	and	use	Ctrl	+	A	to	select	everything	in	the	Spark	distribution,	Ctrl	+	C	to



copy	it,	and	then	go	back	to	C:\spark,	where	I	want	to	put	it,	and	Ctrl	+	V	to	paste	it	in:

Remembering	to	paste	the	contents	of	the	spark	folder,	not	the	spark	folder	itself	is	very	important.	So,	what
I	should	have	now	is	my	C	drive	with	a	spark	folder	that	contains	all	of	the	files	and	folders	from	the	Spark
distribution.

Well,	there	are	still	a	few	things	we	need	to	configure.	So,	while	we're	in	C:\spark	let's	open	up	the	conf
folder,	and	in	order	to	make	sure	that	we	don't	get	spammed	to	death	by	log	messages,	we're	going	to
change	the	logging	level	setting	here.	So	to	do	that,	right-click	on	the	log4j.properties.template	file	and	select
Rename:

Delete	the	.template	part	of	the	filename	to	make	it	an	actual	log4j.properties	file.	Spark	will	use	this	to
configure	its	logging:



Now,	open	this	file	in	a	text	editor	of	some	sort.	On	Windows,	you	might	need	to	right-click	there	and
select	Open	with	and	then	WordPad.	In	the	file,	locate	log4j.rootCategory=INFO:

Let's	change	this	to	log4j.rootCategory=ERROR	and	this	will	just	remove	the	clutter	of	all	the	log	spam	that	gets
printed	out	when	we	run	stuff.	Save	the	file,	and	exit	your	editor.

So	far,	we	installed	Python,	Java,	and	Spark.	Now	the	next	thing	we	need	to	do	is	to	install	something	that
will	trick	your	PC	into	thinking	that	Hadoop	exists,	and	again	this	step	is	only	necessary	on	Windows.	So,
you	can	skip	this	step	if	you're	on	Mac	or	Linux.

I	have	a	little	file	available	that	will	do	the	trick.	Let's	go	to	http://media.sundog-soft.com/winutils.exe.	Downloading
winutils.exe	will	give	you	a	copy	of	a	little	snippet	of	an	executable,	which	can	be	used	to	trick	Spark	into
thinking	that	you	actually	have	Hadoop:

Now,	since	we're	going	to	be	running	our	scripts	locally	on	our	desktop,	it's	not	a	big	deal,	we	don't	need
to	have	Hadoop	installed	for	real.	This	just	gets	around	another	quirk	of	running	Spark	on	Windows.	So,

http://media.sundog-soft.com/winutils.exe


now	that	we	have	that,	let's	find	it	in	the	Downloads	folder,	Ctrl	+	C	to	copy	it,	and	let's	go	to	our	C	drive	and
create	a	place	for	it	to	live:

So,	create	a	new	folder	again	in	the	root	C	drive,	and	we	will	call	it	winutils:

Now	let's	open	this	winutils	folder	and	create	a	bin	folder	inside	it:

Now	in	this	bin	folder,	I	want	you	to	paste	the	winutils.exe	file	we	downloaded.	So	you	should	have
C:\winutils\bin	and	then	winutils.exe:

This	next	step	is	only	required	on	some	systems,	but	just	to	be	safe,	open	Command	Prompt	on	Windows.
You	can	do	that	by	going	to	your	Start	menu	and	going	down	to	Windows	System,	and	then	clicking	on
Command	Prompt.	Here,	I	want	you	to	type	cd	c:\winutils\bin,	which	is	where	we	stuck	our	winutils.exe	file.
Now	if	you	type	dir,	you	should	see	that	file	there.	Now	type	winutils.exe	chmod	777	\tmp\hive.	This	just	makes
sure	that	all	the	file	permissions	you	need	to	actually	run	Spark	successfully	are	in	place	without	any
errors.	You	can	close	Command	Prompt	now	that	you're	done	with	that	step.	Wow,	we're	almost	done,
believe	it	or	not.



Now	we	need	to	set	some	environment	variables	for	things	to	work.	I'll	show	you	how	to	do	that	on
Windows.	On	Windows	10,	you'll	need	to	open	up	the	Start	menu	and	go	to	Windows	System	|	Control
Panel	to	open	up	Control	Panel:

In	Control	Panel,	click	on	System	and	Security:

Then,	click	on	System:



Then	click	on	Advanced	system	settings	from	the	list	on	the	left-hand	side:

From	here,	click	on	Environment	Variables...:



We	will	get	these	options:

Now,	this	is	a	very	Windows-specific	way	of	setting	environment	variables.	On	other	operating	systems,
you'll	use	different	processes,	so	you'll	have	to	look	at	how	to	install	Spark	on	them.	Here,	we're	going	to
set	up	some	new	user	variables.	Click	on	the	first	New...	button	for	a	new	user	variable	and	call	it
SPARK_HOME,	as	shown	below,	all	uppercase.	This	is	going	to	point	to	where	we	installed	Spark,	which	for	us
is	c:\spark,	so	type	that	in	as	the	Variable	value	and	click	on	OK:



We	also	need	to	set	up	JAVA_HOME,	so	click	on	New...	again	and	type	in	JAVA_HOME	as	Variable	name.	We	need
to	point	that	to	where	we	installed	Java,	which	for	us	is	c:\jdk:

We	also	need	to	set	up	HADOOP_HOME,	and	that's	where	we	installed	the	winutils	package,	so	we'll	point	that	to
c:\winutils:

So	far,	so	good.	The	last	thing	we	need	to	do	is	to	modify	our	path.	You	should	have	a	PATH	environment
variable	here:

Click	on	the	PATH	environment	variable,	then	on	Edit...,	and	add	a	new	path.	This	is	going	to	be
%SPARK_HOME%\bin,	and	I'm	going	to	add	another	one,	%JAVA_HOME%\bin:



Basically,	this	makes	all	the	binary	executables	of	Spark	available	to	Windows,	wherever	you're	running
it	from.	Click	on	OK	on	this	menu	and	on	the	previous	two	menus.	We	have	finally	everything	set	up.





Spark	introduction
Let's	get	started	with	a	high-level	overview	of	Apache	Spark	and	see	what	it's	all	about,	what	it's	good
for,	and	how	it	works.

What	is	Spark?	Well,	if	you	go	to	the	Spark	website,	they	give	you	a	very	high-level,	hand-wavy	answer,
"A	fast	and	general	engine	for	large-scale	data	processing."	It	slices,	it	dices,	it	does	your	laundry.	Well,
not	really.	But	it	is	a	framework	for	writing	jobs	or	scripts	that	can	process	very	large	amounts	of	data,
and	it	manages	distributing	that	processing	across	a	cluster	of	computing	for	you.	Basically,	Spark	works
by	letting	you	load	your	data	into	these	large	objects	called	Resilient	Distributed	Data	stores,	RDDs.	It
can	automatically	perform	operations	that	transform	and	create	actions	based	on	those	RDDs,	which	you
can	think	of	as	large	data	frames.

The	beauty	of	it	is	that	Spark	will	automatically	and	optimally	spread	that	processing	out	amongst	an
entire	cluster	of	computers,	if	you	have	one	available.	You	are	no	longer	restricted	to	what	you	can	do	on
a	single	machine	or	a	single	machine's	memory.	You	can	actually	spread	that	out	to	all	the	processing
capabilities	and	memory	that's	available	to	a	cluster	of	machines,	and,	in	this	day	and	age,	computing	is
pretty	cheap.	You	can	actually	rent	time	on	a	cluster	through	things	like	Amazon's	Elastic	MapReduce
service,	and	just	rent	some	time	on	a	whole	cluster	of	computers	for	just	a	few	dollars,	and	run	your	job
that	you	couldn't	run	on	your	own	desktop.





It's	scalable
How	is	Spark	scalable?	Well,	let's	get	a	little	bit	more	specific	here	in	how	it	all	works.

The	way	it	works	is,	you	write	a	driver	program,	which	is	just	a	little	script	that	looks	just	like	any	other
Python	script	really,	and	it	uses	the	Spark	library	to	actually	write	your	script	with.	Within	that	library,
you	define	what's	called	a	Spark	Context,	which	is	sort	of	the	root	object	that	you	work	within	when
you're	developing	in	Spark.

From	there,	the	Spark	framework	kind	of	takes	over	and	distributes	things	for	you.	So	if	you're	running	in
standalone	mode	on	your	own	computer,	like	we're	going	to	be	doing	in	these	upcoming	sections,	it	all
just	stays	there	on	your	computer,	obviously.	However,	if	you	are	running	on	a	cluster	manager,	Spark	can
figure	that	out	and	automatically	take	advantage	of	it.	Spark	actually	has	its	own	built-in	cluster	manager,
you	can	actually	use	it	on	its	own	without	even	having	Hadoop	installed,	but	if	you	do	have	a	Hadoop
cluster	available	to	you,	it	can	use	that	as	well.

Hadoop	is	more	than	MapReduce;	there's	actually	a	component	of	Hadoop	called	YARN	that	separates
out	the	entire	cluster	management	piece	of	Hadoop.	Spark	can	interface	with	YARN	to	actually	use	that	to
optimally	distribute	the	components	of	your	processing	amongst	the	resources	available	to	that	Hadoop
cluster.

Within	a	cluster,	you	might	have	individual	executor	tasks	that	are	running.	These	might	be	running	on
different	computers,	or	they	might	be	running	on	different	cores	of	the	same	computer.	They	each	have
their	own	individual	cache	and	their	own	individual	tasks	that	they	run.	The	driver	program,	the	Spark
Context	and	the	cluster	manager	work	together	to	coordinate	all	this	effort	and	return	the	final	result	back
to	you.

The	beauty	of	it	is,	all	you	have	to	do	is	write	the	initial	little	script,	the	driver	program,	which	uses	a
Spark	Context	to	describe	at	a	high	level	the	processing	you	want	to	do	on	this	data.	Spark,	working
together	with	the	cluster	manager	that	you're	using,	figures	out	how	to	spread	that	out	and	distribute	it	so
you	don't	have	to	worry	about	all	those	details.	Well,	if	it	doesn't	work,	obviously,	you	might	have	to	do
some	troubleshooting	to	figure	out	if	you	have	enough	resources	available	for	the	task	at	hand,	but,	in
theory,	it's	all	just	magic.





It's	fast
What's	the	big	deal	about	Spark?	I	mean,	there	are	similar	technologies	like	MapReduce	that	have	been
around	longer.	Spark	is	fast	though,	and	on	the	website	they	claim	that	Spark	is	"up	to	100x	faster	than
MapReduce	when	running	a	job	in	memory,	or	10	times	faster	on	disk."	Of	course,	the	key	words	here	are
"up	to,"	your	mileage	may	vary.	I	don't	think	I've	ever	seen	anything,	actually,	run	that	much	faster	than
MapReduce.	Some	well-crafted	MapReduce	code	can	actually	still	be	pretty	darn	efficient.	But	I	will	say
that	Spark	does	make	a	lot	of	common	operations	easier.	MapReduce	forces	you	to	really	break	things
down	into	mappers	and	reducers,	whereas	Spark	is	a	little	bit	higher	level.	You	don't	have	to	always	put
as	much	thought	into	doing	the	right	thing	with	Spark.

Part	of	that	leads	to	another	reason	why	Spark	is	so	fast.	It	has	a	DAG	engine,	a	directed	acyclic	graph.
Wow,	that's	another	fancy	word.	What	does	it	mean?	The	way	Spark	works	is,	you	write	a	script	that
describes	how	to	process	your	data,	and	you	might	have	an	RDD	that's	basically	like	a	data	frame.	You
might	do	some	sort	of	transformation	on	it,	or	some	sort	of	action	on	it.	But	nothing	actually	happens	until
you	actually	perform	an	action	on	that	data.	What	happens	at	that	point	is,	Spark	will	say	"hmm,	OK.	So,
this	is	the	end	result	you	want	on	this	data.	What	are	all	the	other	things	I	had	to	do	to	get	up	this	point,	and
what's	the	optimal	way	to	lay	out	the	strategy	for	getting	to	that	point?"	So,	under	the	hood,	it	will	figure
out	the	best	way	to	split	up	that	processing,	and	distribute	that	information	to	get	the	end	result	that	you're
looking	for.	So,	the	key	inside	here,	is	that	Spark	waits	until	you	tell	it	to	actually	produce	a	result,	and
only	at	that	point	does	it	actually	go	and	figure	out	how	to	produce	that	result.	So,	it's	kind	of	a	cool
concept	there,	and	that's	the	key	to	a	lot	of	its	efficiency.

	





It's	young
Spark	is	a	very	hot	technology,	and	is	relatively	young,	so	it's	still	very	much	emerging	and	changing
quickly,	but	a	lot	of	big	people	are	using	it.	Amazon,	for	example,	has	claimed	they're	using	it,	eBay,
NASA's	Jet	Propulsional	Laboratories,	Groupon,	TripAdvisor,	Yahoo,	and	many,	many	others	have	too.
I'm	sure	there's	a	lot	of	companies	using	it	that	don't	confess	up	to	it,	but	if	you	go	to	the	Spark	Apache
Wiki	page	at	http://spark.apache.org/powered-by.html.

There's	actually	a	list	you	can	look	up	of	known	big	companies	that	are	using	Spark	to	solve	real-world
data	problems.	If	you	are	worried	that	you're	getting	into	the	bleeding	edge	here,	fear	not,	you're	in	very
good	company	with	some	very	big	people	that	are	using	Spark	in	production	for	solving	real	problems.	It
is	pretty	stable	stuff	at	this	point.

	

http://spark.apache.org/powered-by.html




It's	not	difficult
It's	also	not	that	hard.	You	have	your	choice	of	programming	in	Python,	Java,	or	Scala,	and	they're	all	built
around	the	same	concept	that	I	just	described	earlier,	that	is,	the	Resilient	Distributed	Dataset,	RDD	for
short.	We'll	talk	about	that	in	a	lot	more	detail	in	the	coming	sections	of	this	chapter.

	



	



Components	of	Spark
	

Spark	actually	has	many	different	components	that	it's	built	up	of.	So	there	is	a	Spark	Core	that	lets	you	do
pretty	much	anything	you	can	dream	up	just	using	Spark	Core	functions	alone,	but	there	are	these	other
things	built	on	top	of	Spark	that	are	also	useful.

Spark	Streaming:	Spark	Streaming	is	a	library	that	lets	you	actually	process	data	in	real	time.	Data
can	be	flowing	into	a	server	continuously,	say,	from	weblogs,	and	Spark	Streaming	can	help	you
process	that	data	in	real	time	as	you	go,	forever.
Spark	SQL:	This	lets	you	actually	treat	data	as	a	SQL	database,	and	actually	issue	SQL	queries	on
it,	which	is	kind	of	cool	if	you're	familiar	with	SQL	already.
MLlib:	This	is	what	we're	going	to	be	focusing	on	in	this	section.	It	is	actually	a	machine	learning
library	that	lets	you	perform	common	machine	learning	algorithms,	with	Spark	underneath	the	hood
to	actually	distribute	that	processing	across	a	cluster.	You	can	perform	machine	learning	on	much
larger	Datasets	than	you	could	have	otherwise.
GraphX:	This	is	not	for	making	pretty	charts	and	graphs.	It	refers	to	graph	in	the	network	theory
sense.	Think	about	a	social	network;	that's	an	example	of	a	graph.	GraphX	just	has	a	few	functions
that	let	you	analyze	the	properties	of	a	graph	of	information.

	

	





Python	versus	Scala	for	Spark
I	do	get	some	flack	sometimes	about	using	Python	when	I'm	teaching	people	about	Apache	Spark,	but
there's	a	method	to	my	madness.	It	is	true	that	a	lot	of	people	use	Scala	when	they're	writing	Spark	code,
because	that's	what	Spark	is	developed	in	natively.	So,	you	are	incurring	a	little	bit	of	overhead	by
forcing	Spark	to	translate	your	Python	code	into	Scala	and	then	into	Java	interpreter	commands	at	the	end
of	the	day.

However,	Python's	a	lot	easier,	and	you	don't	need	to	compile	things.	Managing	dependencies	is	also	a	lot
easier.	You	can	really	focus	your	time	on	the	algorithms	and	what	you're	doing,	and	less	on	the	minutiae	of
actually	getting	it	built,	and	running,	and	compiling,	and	all	that	nonsense.	Plus,	obviously,	this	book	has
been	focused	on	Python	so	far,	and	it	makes	sense	to	keep	using	what	we've	learned	and	stick	with	Python
throughout	these	lectures.	Here's	a	quick	summary	of	the	pros	and	cons	of	the	two	languages:

Python Scala

No	need	to	compile,	manage	dependencies,
etc.
Less	coding	overhead
You	already	know	Python
Lets	us	focus	on	the	concepts	instead	of	a	new
language

Scala	is	probably	a	more	popular	choice	with	Spark
Spark	is	built	in	Scala,	so	coding	in	Scala	is	"native"
to	Spark
New	features,	libraries	tend	to	be	Scala-first

However,	I	will	say	that	if	you	were	to	do	some	Spark	programming	in	the	real	world,	there's	a	good
chance	people	are	using	Scala.	Don't	worry	about	it	too	much,	though,	because	in	Spark	the	Python	and
Scala	code	ends	up	looking	very	similar	because	it's	all	around	the	same	RDD	concept.	The	syntax	is	very
slightly	different,	but	it's	not	that	different.	If	you	can	figure	out	how	to	do	Spark	using	Python,	learning
how	to	use	it	in	Scala	isn't	that	big	of	a	leap,	really.	Here's	a	quick	example	of	the	same	code	in	the	two

languages:	

So,	that's	the	basic	concepts	of	Spark	itself,	why	it's	such	a	big	deal,	and	how	it's	so	powerful	in	letting
you	run	machine	learning	algorithms	on	very	large	Datasets,	or	any	algorithm	really.	Let's	now	talk	in	a
little	bit	more	detail	about	how	it	does	that,	and	the	core	concept	of	the	Resilient	Distributed	Dataset.



	



Spark	and	Resilient	Distributed	Datasets	(RDD)
	

Let's	get	a	little	bit	deeper	into	how	Spark	works.	We're	going	to	talk	about	Resilient	Distributed
Datasets,	known	as	RDDs.	It's	sort	of	the	core	that	you	use	when	programming	in	Spark,	and	we'll	have	a
few	code	snippets	to	try	to	make	it	real.	We're	going	to	give	you	a	crash	course	in	Apache	Spark	here.
There's	a	lot	more	depth	to	it	than	what	we're	going	to	cover	in	the	next	few	sections,	but	I'm	just	going	to
give	you	the	basics	you	need	to	actually	understand	what's	going	on	in	these	examples,	and	hopefully	get
you	started	and	pointed	in	the	right	direction.

As	mentioned,	the	most	fundamental	piece	of	Spark	is	called	the	Resilient	Distributed	Dataset,	an	RDD,
and	this	is	going	to	be	the	object	that	you	use	to	actually	load	and	transform	and	get	the	answers	you	want
out	of	the	data	that	you're	trying	to	process.	It's	a	very	important	thing	to	understand.	The	final	letter	in
RDD	stands	for	Dataset,	and	at	the	end	of	the	day	that's	all	it	is;	it's	just	a	bunch	of	rows	of	information
that	can	contain	pretty	much	anything.	But	the	key	is	the	R	and	the	first	D.

Resilient:	It	is	resilient	in	that	Spark	makes	sure	that	if	you're	running	this	on	a	cluster	and	one	of
those	clusters	goes	down,	it	can	automatically	recover	from	that	and	retry.	Now,	that	resilience	only
goes	so	far,	mind	you.	If	you	don't	have	enough	resources	available	to	the	job	that	you're	trying	to
run,	it	will	still	fail,	and	you	will	have	to	add	more	resources	to	it.	There's	only	so	many	things	it	can
recover	from;	there	is	a	limit	to	how	many	times	it	will	retry	a	given	task.	But	it	does	make	its	best
effort	to	make	sure	that	in	the	face	of	an	unstable	cluster	or	an	unstable	network	it	will	still	continue
to	try	its	best	to	run	through	to	completion.
Distributed:	Obviously,	it	is	distributed.	The	whole	point	of	using	Spark	is	that	you	can	use	it	for	big
data	problems	where	you	can	actually	distribute	the	processing	across	the	entire	CPU	and	memory
power	of	a	cluster	of	computers.	That	can	be	distributed	horizontally,	so	you	can	throw	as	many
computers	as	you	want	to	a	given	problem.	The	larger	the	problem,	the	more	computers;	there's
really	no	upper	bound	to	what	you	can	do	there.

	

	





The	SparkContext	object
You	always	start	your	Spark	scripts	by	getting	a	SparkContext	object,	and	this	is	the	object	that	embodies
the	guts	of	Spark.	It	is	what	is	going	to	give	you	your	RDDs	to	process	on,	so	it	is	what	generates	the
objects	that	you	use	in	your	processing.

You	know,	you	don't	actually	think	about	the	SparkContext	very	much	when	you're	actually	writing	Spark
programs,	but	it	is	sort	of	the	substrate	that	is	running	them	for	you	under	the	hood.	If	you're	running	in	the
Spark	shell	interactively,	it	has	an	sc	object	already	available	for	you	that	you	can	use	to	create	RDDs.	In
a	standalone	script,	however,	you	will	have	to	create	that	SparkContext	explicitly,	and	you'll	have	to	pay
attention	to	the	parameters	that	you	use	because	you	can	actually	tell	the	Spark	context	how	you	want	that
to	be	distributed.	Should	I	take	advantage	of	every	core	that	I	have	available	to	me?	Should	I	be	running
on	a	cluster	or	just	standalone	on	my	local	computer?	So,	that's	where	you	set	up	the	fundamental	settings
of	how	Spark	will	operate.

	





Creating	RDDs
Let's	look	at	some	little	code	snippets	of	actually	creating	RDDs,	and	I	think	it	will	all	start	to	make	a
little	bit	more	sense.





Creating	an	RDD	using	a	Python	list
The	following	is	a	very	simple	example:

nums	=	parallelize([1,	2,	3,	4])	

If	I	just	want	to	make	an	RDD	out	of	a	plain	old	Python	list,	I	can	call	the	parallelize()	function	in	Spark.
That	will	convert	a	list	of	stuff,	in	this	case,	just	the	numbers,	1,	2,	3,	4,	into	an	RDD	object	called	nums.

That	is	the	simplest	case	of	creating	an	RDD,	just	from	a	hard-coded	list	of	stuff.	That	list	could	come
from	anywhere;	it	doesn't	have	to	be	hard-coded	either,	but	that	kind	of	defeats	the	purpose	of	big	data.	I
mean,	if	I	have	to	load	the	entire	Dataset	into	memory	before	I	can	create	an	RDD	from	it,	what's	the
point?





Loading	an	RDD	from	a	text	file
I	can	also	load	an	RDD	from	a	text	file,	and	that	could	be	anywhere.

sc.textFile("file:///c:/users/frank/gobs-o-text.txt")		

In	this	example,	I	have	a	giant	text	file	that's	the	entire	encyclopedia	or	something.	I'm	reading	that	from
my	local	disk	here,	but	I	could	also	use	s3n	if	I	want	to	host	this	file	on	a	distributed	AmazonS3	bucket,	or
hdfs	if	I	want	to	refer	to	data	that's	stored	on	a	distributed	HDFS	cluster	(that	stands	for	Hadoop
Distributed	File	System	if	you're	not	familiar	with	HDFS).	When	you're	dealing	with	big	data	and
working	with	a	Hadoop	cluster,	usually	that's	where	your	data	will	live.

That	line	of	code	will	actually	convert	every	line	of	that	text	file	into	its	own	row	in	an	RDD.	So,	you	can
think	of	the	RDD	as	a	database	of	rows,	and,	in	this	example,	it	will	load	up	my	text	file	into	an	RDD
where	every	line,	every	row,	contains	one	line	of	text.	I	can	then	do	further	processing	in	that	RDD	to
parse	or	break	out	the	delimiters	in	that	data.	But	that's	where	I	start	from.

Remember	when	we	talked	about	ETL	and	ELT	earlier	in	the	book?	This	is	a	good	example	of	where	you
might	actually	be	loading	raw	data	into	a	system	and	doing	the	transform	on	the	system	itself	that	you	used
to	query	your	data.	You	can	take	raw	text	files	that	haven't	been	processed	at	all	and	use	the	power	of
Spark	to	actually	transform	those	into	more	structured	data.

It	can	also	talk	to	things	like	Hive,	so	if	you	have	an	existing	Hive	database	set	up	at	your	company,	you
can	create	a	Hive	context	that's	based	on	your	Spark	context.	How	cool	is	that?	Take	a	look	at	this
example	code:

hiveCtx	=	HiveContext(sc)		rows	=	hiveCtx.sql("SELECT	name,	age	FROM	users")		

You	can	actually	create	an	RDD,	in	this	case	called	rows,	that's	generated	by	actually	executing	a	SQL
query	on	your	Hive	database.





More	ways	to	create	RDDs
There	are	more	ways	to	create	RDDs	as	well.	You	can	create	them	from	a	JDBC	connection.	Basically
any	database	that	supports	JDBC	can	also	talk	to	Spark	and	have	RDDs	created	from	it.	Cassandra,
HBase,	Elasticsearch,	also	files	in	JSON	format,	CSV	format,	sequence	files	object	files,	and	a	bunch	of
other	compressed	files	like	ORC	can	be	used	to	create	RDDs.	I	don't	want	to	get	into	the	details	of	all
those,	you	can	get	a	book	and	look	those	up	if	you	need	to,	but	the	point	is	that	it's	very	easy	to	create	an
RDD	from	data,	wherever	it	might	be,	whether	it's	on	a	local	filesystem	or	a	distributed	data	store.

Again,	RDD	is	just	a	way	of	loading	and	maintaining	very	large	amounts	of	data	and	keeping	track	of	it	all
at	once.	But,	conceptually	within	your	script,	an	RDD	is	just	an	object	that	contains	a	bunch	of	data.	You
don't	have	to	think	about	the	scale,	because	Spark	does	that	for	you.

	





RDD	operations
Now,	there	are	two	different	types	of	classes	of	things	you	can	do	on	RDDs	once	you	have	them,	you	can
do	transformations,	and	you	can	do	actions.



	



Transformations
	

Let's	talk	about	transformations	first.	Transformations	are	exactly	what	they	sound	like.	It's	a	way	of	taking
an	RDD	and	transforming	every	row	in	that	RDD	to	a	new	value,	based	on	a	function	you	provide.	Let's
look	at	some	of	those	functions:

map()	and	flatmap():	map	and	flatmap	are	the	functions	you'll	see	the	most	often.	Both	of	these	will
take	any	function	that	you	can	dream	up,	that	will	take,	as	input,	a	row	of	an	RDD,	and	it	will	output
a	transformed	row.	For	example,	you	might	take	raw	input	from	a	CSV	file,	and	your	map	operation
might	take	that	input	and	break	it	up	into	individual	fields	based	on	the	comma	delimiter,	and	return
back	a	Python	list	that	has	that	data	in	a	more	structured	format	that	you	can	perform	further
processing	on.	You	can	chain	map	operations	together,	so	the	output	of	one	map	might	end	up	creating
a	new	RDD	that	you	then	do	another	transformation	on,	and	so	on,	and	so	forth.	Again,	the	key	is,
Spark	can	distribute	those	transformations	across	the	cluster,	so	it	might	take	part	of	your	RDD	and
transform	it	on	one	machine,	and	another	part	of	your	RDD	and	transform	it	on	another.

Like	I	said,	map	and	flatmap	are	the	most	common	transformations	you'll	see.	The	only	difference
is	that	map	will	only	allow	you	to	output	one	value	for	every	row,	whereas	flatmap	will	let	you
actually	output	multiple	new	rows	for	a	given	row.	So	you	can	actually	create	a	larger	RDD	or
a	smaller	RDD	than	you	started	with	using	flatmap.

filter():	filter	can	be	used	if	what	you	want	to	do	is	just	create	a	Boolean	function	that	says	"should
this	row	be	preserved	or	not?	Yes	or	no."
distinct():	distinct	is	a	less	commonly	used	transformation	that	will	only	return	back	distinct	values
within	your	RDD.
sample():	This	function	lets	you	take	a	random	sample	from	your	RDD
union(),	intersection(),	subtract()	and	Cartesian():	You	can	perform	intersection	operations	like
union,	intersection,	subtract,	or	even	produce	every	cartesian	combination	that	exists	within	an	RDD.

	

	





Using	map()
Here's	a	little	example	of	how	you	might	use	the	map	function	in	your	work:

rdd	=	sc.parallelize([1,	2,	3,	4])	

rdd.map(lambda	x:	x*x)	

Let's	say	I	created	an	RDD	just	from	the	list	1,	2,	3,	4.	I	can	then	call	rdd.map()	with	a	lambda	function	of	x
that	takes	in	each	row,	that	is,	each	value	of	that	RDD,	calls	it	x,	and	then	it	applies	the	function	x
multiplied	by	x	to	square	it.	If	I	were	to	then	collect	the	output	of	this	RDD,	it	would	be	1,	4,	9	and	16,
because	it	would	take	each	individual	entry	of	that	RDD	and	square	it,	and	put	that	into	a	new	RDD.

If	you	don't	remember	what	lambda	functions	are,	we	did	talk	about	it	a	little	bit	earlier	in	this	book,	but
as	a	refresher,	the	lambda	function	is	just	a	shorthand	for	defining	a	function	in	line.	So	rdd.map(lambda	x:
x*x)	is	exactly	the	same	thing	as	a	separate	function	def	squareIt(x):	return	x*x,	and	saying	rdd.map(squareIt).

It's	just	a	shorthand	for	very	simple	functions	that	you	want	to	pass	in	as	a	transformation.	It	eliminates	the
need	to	actually	declare	this	as	a	separate	named	function	of	its	own.	That's	the	whole	idea	of	functional
programming.	So	you	can	say	you	understand	functional	programming	now,	by	the	way!	But	really,	it's	just
shorthand	notation	for	defining	a	function	inline	as	part	of	the	parameters	to	a	map()	function,	or	any
transformation	for	that	matter.





Actions
You	can	also	perform	actions	on	an	RDD,	when	you	want	to	actually	get	a	result.	Here	are	some	examples
of	what	you	can	do:

collect():	You	can	call	collect()	on	an	RDD,	which	will	give	you	back	a	plain	old	Python	object	that
you	can	then	iterate	through	and	print	out	the	results,	or	save	them	to	a	file,	or	whatever	you	want	to
do.
count():	You	can	also	call	count(),	which	will	force	it	to	actually	go	count	how	many	entries	are	in	the
RDD	at	this	point.
countByValue():	This	function	will	give	you	a	breakdown	of	how	many	times	each	unique	value	within
that	RDD	occurs.
take():	You	can	also	sample	from	the	RDD	using	take(),	which	will	take	a	random	number	of	entries
from	the	RDD.
top():	top()	will	give	you	the	first	few	entries	in	that	RDD	if	you	just	want	to	get	a	little	peek	into
what's	in	there	for	debugging	purposes.
reduce():	The	more	powerful	action	is	reduce()	which	will	actually	let	you	combine	values	together	for
the	same	common	key	value.	You	can	also	use	RDDs	in	the	context	of	key-value	data.	The	reduce()
function	lets	you	define	a	way	of	combining	together	all	the	values	for	a	given	key.	It	is	very	much
similar	in	spirit	to	MapReduce.	reduce()	is	basically	the	analogous	operation	to	a	reducer()	in
MapReduce,	and	map()	is	analogous	to	a	mapper().	So,	it's	often	very	straightforward	to	actually	take	a
MapReduce	job	and	convert	it	to	Spark	by	using	these	functions.

Remember,	too,	that	nothing	actually	happens	in	Spark	until	you	call	an	action.	Once	you	call	one	of	those
action	methods,	that's	when	Spark	goes	out	and	does	its	magic	with	directed	acyclic	graphs,	and	actually
computes	the	optimal	way	to	get	the	answer	you	want.	But	remember,	nothing	really	occurs	until	that
action	happens.	So,	that	can	sometimes	trip	you	up	when	you're	writing	Spark	scripts,	because	you	might
have	a	little	print	statement	in	there,	and	you	might	expect	to	get	an	answer,	but	it	doesn't	actually	appear
until	the	action	is	actually	performed.

That	is	Spark	101	in	a	nutshell.	Those	are	the	basics	you	need	for	Spark	programming.	Basically,	what	is
an	RDD	and	what	are	the	things	you	can	do	to	an	RDD.	Once	you	get	those	concepts,	then	you	can	write
some	Spark	code.	Let's	change	tack	now	and	talk	about	MLlib,	and	some	specific	features	in	Spark	that	let
you	do	machine	learning	algorithms	using	Spark.

	





Introducing	MLlib
Fortunately,	you	don't	have	to	do	things	the	hard	way	in	Spark	when	you're	doing	machine	learning.	It	has
a	built-in	component	called	MLlib	that	lives	on	top	of	Spark	Core,	and	this	makes	it	very	easy	to	perform
complex	machine	learning	algorithms	using	massive	Datasets,	and	distributing	that	processing	across	an
entire	cluster	of	computers.	So,	very	exciting	stuff.	Let's	learn	more	about	what	it	can	do.

	





Some	MLlib	Capabilities
So,	what	are	some	of	the	things	MLlib	can	do?	Well,	one	is	feature	extraction.

One	thing	you	can	do	at	scale	is	term	frequency	and	inverse	document	frequency	stuff,	and	that's	useful	for
creating,	for	example,	search	indexes.	We	will	actually	go	through	an	example	of	that	later	in	the	chapter.
The	key,	again,	is	that	it	can	do	this	across	a	cluster	using	massive	Datasets,	so	you	could	make	your	own
search	engine	for	the	web	with	this,	potentially.	It	also	offers	basic	statistics	functions,	chi-squared	tests,
Pearson	or	Spearman	correlation,	and	some	simpler	things	like	min,	max,	mean,	and	variance.	Those
aren't	terribly	exciting	in	and	of	themselves,	but	what	is	exciting	is	that	you	can	actually	compute	the
variance	or	the	mean	or	whatever,	or	the	correlation	score,	across	a	massive	Dataset,	and	it	would
actually	break	that	Dataset	up	into	various	chunks	and	run	that	across	an	entire	cluster	if	necessary.

So,	even	if	some	of	these	operations	aren't	terribly	interesting,	what's	interesting	about	it	is	the	scale	at
which	it	can	operate	at.	It	can	also	support	things	like	linear	regression	and	logistic	regression,	so	if	you
need	to	fit	a	function	to	a	massive	set	of	data	and	use	that	for	predictions,	you	can	do	that	too.	It	also
supports	Support	Vector	Machines.	We're	getting	into	some	of	the	more	fancy	algorithms	here,	some	of	the
more	advanced	stuff,	and	that	too	can	scale	up	to	massive	Datasets	using	Spark's	MLlib.	There	is	a	Naive
Bayes	classifier	built	into	MLlib,	so,	remember	that	spam	classifier	that	we	built	earlier	in	the	book?	You
could	actually	do	that	for	an	entire	e-mail	system	using	Spark,	and	scale	that	up	as	far	as	you	want	to.

Decision	trees,	one	of	my	favorite	things	in	machine	learning,	are	also	supported	by	Spark,	and	we'll
actually	have	an	example	of	that	later	in	this	chapter.	We'll	also	look	at	K-Means	clustering,	and	you	can
do	clustering	using	K-Means	and	massive	Datasets	with	Spark	and	MLlib.	Even	principal	component
analysis	and	SVD	(Singular	Value	Decomposition)	can	be	done	with	Spark	as	well,	and	we'll	have	an
example	of	that	too.	And,	finally,	there's	a	built-in	recommendations	algorithm	called	Alternating	Least
Squares	that's	built	into	MLlib.	Personally,	I've	had	kind	of	mixed	results	with	it,	you	know,	it's	a	little	bit
too	much	of	a	black	box	for	my	taste,	but	I	am	a	recommender	system	snob,	so	take	that	with	a	grain	of
salt!





Special	MLlib	data	types
Using	MLlib	is	usually	pretty	straightforward,	there	are	just	some	library	functions	you	need	to	call.	It
does	introduce	a	few	new	data	types;	however,	that	you	need	to	know	about,	and	one	is	the	vector.





The	vector	data	type
Remember	when	we	were	doing	movie	similarities	and	movie	recommendations	earlier	in	the	book?	An
example	of	a	vector	might	be	a	list	of	all	the	movies	that	a	given	user	rated.	There	are	two	types	of	vector,
sparse	and	dense.	Let's	look	at	an	example	of	those.	There	are	many,	many	movies	in	the	world,	and	a
dense	vector	would	actually	represent	data	for	every	single	movie,	whether	or	not	a	user	actually	watched
it.	So,	for	example,	let's	say	I	have	a	user	who	watched	Toy	Story,	obviously	I	would	store	their	rating	for
Toy	Story,	but	if	they	didn't	watch	the	movie	Star	Wars,	I	would	actually	store	the	fact	that	there	is	not	a
number	for	Star	Wars.	So,	we	end	up	taking	up	space	for	all	these	missing	data	points	with	a	dense	vector.
A	sparse	vector	only	stores	the	data	that	exists,	so	it	doesn't	waste	any	memory	space	on	missing	data,
OK.	So,	it's	a	more	compact	form	of	representing	a	vector	internally,	but	obviously	that	introduces	some
complexity	while	processing.	So,	it's	a	good	way	to	save	memory	if	you	know	that	your	vectors	are	going
to	have	a	lot	of	missing	data	in	them.

	





LabeledPoint	data	type
There's	also	a	LabeledPoint	data	type	that	comes	up,	and	that's	just	what	it	sounds	like,	a	point	that	has	some
sort	of	label	associated	with	it	that	conveys	the	meaning	of	this	data	in	human	readable	terms.





Rating	data	type
Finally,	there	is	a	Rating	data	type	that	you'll	encounter	if	you're	using	recommendations	with	MLlib.	This
data	type	can	take	in	a	rating	that	represents	a	1-5	or	1-10,	whatever	star	rating	a	person	might	have,	and
use	that	to	inform	product	recommendations	automatically.

So,	I	think	you	finally	have	everything	you	need	to	get	started,	let's	dive	in	and	actually	look	at	some	real
MLlib	code	and	run	it,	and	then	it	will	make	a	lot	more	sense.

	





Decision	Trees	in	Spark	with	MLlib
Alright,	let's	actually	build	some	decision	trees	using	Spark	and	the	MLlib	library,	this	is	very	cool	stuff.
Wherever	you	put	the	course	materials	for	this	book,	I	want	you	to	go	to	that	folder	now.	Make	sure	you're
completely	closed	out	of	Canopy,	or	whatever	environment	you're	using	for	Python	development,	because
I	want	to	make	sure	you're	starting	it	from	this	directory,	OK?	And	find	the	SparkDecisionTree	script,	and
double-click	that	to	open	up	Canopy:	

Now,	up	until	this	point	we've	been	using	IPython	notebooks	for	our	code,	but	you	can't	really	use	those
very	well	with	Spark.	With	Spark	scripts,	you	need	to	actually	submit	them	to	the	Spark	infrastructure	and
run	them	in	a	very	special	way,	and	we'll	see	how	that	works	shortly.





Exploring	decision	trees	code
So,	we	are	just	looking	at	a	raw	Python	script	file	now,	without	any	of	the	usual	embellishment	of	the
IPython	notebook	stuff.	let's	walk	through	what's	going	on	in	the	script.

We'll	go	through	it	slowly,	because	this	is	your	first	Spark	script	that	you've	seen	in	this	book.

First,	we're	going	to	import,	from	pyspark.mllib,	the	bits	that	we	need	from	the	machine	learning	library	for
Spark.

from	pyspark.mllib.regression	import	LabeledPoint	

from	pyspark.mllib.tree	import	DecisionTree	

We	need	the	LabeledPoint	class,	which	is	a	data	type	required	by	the	DecisionTree	class,	and	the	DecisionTree
class	itself,	imported	from	mllib.tree.

Next,	pretty	much	every	Spark	script	you	see	is	going	to	include	this	line,	where	we	import	SparkConf	and
SparkContext:

from	pyspark	import	SparkConf,	SparkContext	

This	is	needed	to	create	the	SparkContext	object	that	is	kind	of	the	root	of	everything	you	do	in	Spark.

And	finally,	we're	going	to	import	the	array	library	from	numpy:

from	numpy	import	array	



Yes,	you	can	still	use	NumPy,	and	scikit-learn,	and	whatever	you	want	within	Spark	scripts.	You	just	have	to
make	sure,	first	of	all,	that	these	libraries	are	installed	on	every	machine	that	you	intend	to	run	it	on.

If	you're	running	on	a	cluster,	you	need	to	make	sure	that	those	Python	libraries	are	already	in	place
somehow,	and	you	also	need	to	understand	that	Spark	will	not	make	the	scikit-learn	methods,	for	example,
magically	scalable.	You	can	still	call	these	functions	in	the	context	of	a	given	map	function,	or	something
like	that,	but	it's	only	going	to	run	on	that	one	machine	within	that	one	process.	Don't	lean	on	that	stuff	too
heavily,	but,	for	simple	things	like	managing	arrays,	it's	totally	an	okay	thing	to	do.



conf	=	SparkConf().setMaster("local").setAppName("SparkDecisionTree")

sc	=	SparkContext(conf	=	conf)

#	Some	functions	that	convert	our	CSV	input	data	into	numerical	#	features	for	each	job
candidate

def	binary(YN):

if	(YN	==	'Y'):

return	1

else:

return	0

	

def	mapEducation(degree):

if	(degree	==	'BS'):	return	1

elif	(degree	=='MS'):	return	2

elif	(degree	==	'PhD'):	return	3

else:

return	0

	

#	Convert	a	list	of	raw	fields	from	our	CSV	file	to	a	#	LabeledPoint	that	MLLib	can	use.
All	data	must	be	numerical...

def	createLabeledPoints(fields):

yearsExperience	=	int(fields[0])	employed	=	binary(fields[1])	previousEmployers	=
int(fields[2])	educationLevel	=	mapEducation(fields[3])	topTier	=	binary(fields[4])
interned	=	binary(fields[5])	hired	=	binary(fields[6])



return	LabeledPoint(hired,	array([yearsExperience,	employed,	previousEmployers,
educationLevel,	topTier,	interned]))

Let's	just	get	down	these	functions	for	now,	and	we'll	come	back	to	them	later.





Importing	and	cleaning	our	data
Let's	go	to	the	first	bit	of	Python	code	that	actually	gets	executed	in	this	script.

The	first	thing	we're	going	to	do	is	load	up	this	PastHires.csv	file,	and	that's	the	same	file	we	used	in	the
decision	tree	exercise	that	we	did	earlier	in	this	book.

Let's	pause	quickly	to	remind	ourselves	of	the	content	of	that	file.	If	you	remember	right,	we	have	a	bunch
of	attributes	of	job	candidates,	and	we	have	a	field	of	whether	or	not	we	hired	those	people.	What	we're
trying	to	do	is	build	up	a	decision	tree	that	will	predict	-	would	we	hire	or	not	hire	a	person	given	those
attributes?

Now,	let's	take	a	quick	peek	at	the	PastHires.csv,	which	will	be	an	Excel	file.

You	can	see	that	Excel	actually	imported	this	into	a	table,	but	if	you	were	to	look	at	the	raw	text	you'd	see
that	it's	made	up	of	comma-separated	values.

The	first	line	is	the	actual	headings	of	each	column,	so	what	we	have	above	are	the	number	of	years	of
prior	experience,	is	the	candidate	currently	employed	or	not,	number	of	previous	employers,	the	level	of
education,	whether	they	went	to	a	top-tier	school,	whether	they	had	an	internship	while	they	were	in
school,	and	finally,	the	target	that	we're	trying	to	predict	on,	whether	or	not	they	got	a	job	offer	in	the	end
of	the	day.	Now,	we	need	to	read	that	information	into	an	RDD	so	we	can	do	something	with	it.

Let's	go	back	to	our	script:

rawData	=	sc.textFile("e:/sundog-consult/udemy/datascience/PastHires.csv")	



header	=	rawData.first()	

rawData	=	rawData.filter(lambda	x:x	!=	header)	

The	first	thing	we	need	to	do	is	read	that	CSV	data	in,	and	we're	going	to	throw	away	that	first	row,
because	that's	our	header	information,	remember.	So,	here's	a	little	trick	for	doing	that.	We	start	off	by
importing	every	single	line	from	that	file	into	a	raw	data	RDD,	and	I	could	call	that	anything	I	want,	but
we're	calling	it	sc.textFile.	SparkContext	has	a	textFile	function	that	will	take	a	text	file	and	create	a	new
RDD,	where	each	entry,	each	line	of	the	RDD,	consists	of	one	line	of	input.

Make	sure	you	change	the	path	to	that	file	to	wherever	you	actually	installed	it,
otherwise	it	won't	work.

Now,	I'm	going	to	extract	the	first	line,	the	first	row	from	that	RDD,	by	using	the	first	function.	So,	now
the	header	RDD	will	contain	one	entry	that	is	just	that	row	of	column	headers.	And	now,	look	what's
going	on	in	the	above	code,	I'm	using	filter	on	my	original	data	that	contains	all	of	the	information	in	that
CSV	file,	and	I'm	defining	a	filter	function	that	will	only	let	lines	through	if	that	line	is	not	equal	to	the
contents	of	that	initial	header	row.	What	I've	done	here	is,	I've	taken	my	raw	CSV	file	and	I've	stripped
out	the	first	line	by	only	allowing	lines	that	do	not	equal	that	first	line	to	survive,	and	I'm	returning	that
back	to	the	rawData	RDD	variable	again.	So,	I'm	taking	rawData,	filtering	out	that	first	line,	and	creating	a
new	rawData	that	only	contains	the	data	itself.	With	me	so	far?	It's	not	that	complicated.

Now,	we're	going	to	use	a	map	function.	What	we	need	to	do	next	is	start	to	make	more	structure	out	of	this
information.	Right	now,	every	row	of	my	RDD	is	just	a	line	of	text,	it	is	comma-delimited	text,	but	it's	still
just	a	giant	line	of	text,	and	I	want	to	take	that	comma-separated	value	list	and	actually	split	it	up	into
individual	fields.	At	the	end	of	the	day,	I	want	each	RDD	to	be	transformed	from	a	line	of	text	that	has	a
bunch	of	information	separated	by	commas	into	a	Python	list	that	has	actual	individual	fields	for	each
column	of	information	that	I	have.	So,	that's	what	this	lambda	function	does:

csvData	=	rawData.map(lambda	x:	x.split(","))	

It	calls	the	built-in	Python	function	split,	which	will	take	a	row	of	input,	and	split	it	on	comma	characters,
and	divide	that	into	a	list	of	every	field	delimited	by	commas.

The	output	of	this	map	function,	where	I	passed	in	a	lambda	function	that	just	splits	every	line	into	fields
based	on	commas,	is	a	new	RDD	called	csvData.	And,	at	this	point,	csvData	is	an	RDD	that	contains,	on
every	row,	a	list	where	every	element	is	a	column	from	my	source	data.	Now,	we're	getting	close.

It	turns	out	that	in	order	to	use	a	decision	tree	with	MLlib,	a	couple	of	things	need	to	be	true.	First	of	all,
the	input	has	to	be	in	the	form	of	LabeledPoint	data	types,	and	it	all	has	to	be	numeric	in	nature.	So,	we
need	to	transform	all	of	our	raw	data	into	data	that	can	actually	be	consumed	by	MLlib,	and	that's	what	the
createLabeledPoints	function	that	we	skipped	past	earlier	does.	We'll	get	to	that	in	just	a	second,	first	here's
the	call	to	it:

trainingData	=	csvData.map(createLabeledPoints)	

We're	going	to	call	a	map	on	csvData,	and	we	are	going	to	pass	it	the	createLabeledPoints	function,	which	will
transform	every	input	row	into	something	even	closer	to	what	we	want	at	the	end	of	the	day.	So,	let's	look



at	what	createLabeledPoints	does:

def	createLabeledPoints(fields):	

				yearsExperience	=	int(fields[0])	

				employed	=	binary(fields[1])	

				previousEmployers	=	int(fields[2])	

				educationLevel	=	mapEducation(fields[3])	

				topTier	=	binary(fields[4])	

				interned	=	binary(fields[5])	

				hired	=	binary(fields[6])	

	

				return	LabeledPoint(hired,	array([yearsExperience,	employed,	

								previousEmployers,	educationLevel,	topTier,	interned]))	

It	takes	in	a	list	of	fields,	and	just	to	remind	you	again	what	that	looks	like,	let's	pull	up	that	.csv	Excel	file
again:

So,	at	this	point,	every	RDD	entry	has	a	field,	it's	a	Python	list,	where	the	first	element	is	the	years	of
experience,	second	element	is	employed,	so	on	and	so	forth.	The	problems	here	are	that	we	want	to
convert	those	lists	to	Labeled	Points,	and	we	want	to	convert	everything	to	numerical	data.	So,	all	these
yes	and	no	answers	need	to	be	converted	to	ones	and	zeros.	These	levels	of	experience	need	to	be
converted	from	names	of	degrees	to	some	numeric	ordinal	value.	Maybe	we'll	assign	the	value	zero	to	no
education,	one	can	mean	BS,	two	can	mean	MS,	and	three	can	mean	PhD,	for	example.	Again,	all	these
yes/no	values	need	to	be	converted	to	zeros	and	ones,	because	at	the	end	of	the	day,	everything	going	into
our	decision	tree	needs	to	be	numeric,	and	that's	what	createLabeledPoints	does.	Now,	let's	go	back	to	the
code	and	run	through	it:

def	createLabeledPoints(fields):	

				yearsExperience	=	int(fields[0])	

				employed	=	binary(fields[1])	

				previousEmployers	=	int(fields[2])	

				educationLevel	=	mapEducation(fields[3])	

				topTier	=	binary(fields[4])	

				interned	=	binary(fields[5])	

				hired	=	binary(fields[6])	

	

				return	LabeledPoint(hired,	array([yearsExperience,	employed,	

								previousEmployers,	educationLevel,	topTier,	interned]))	

First,	it	takes	in	our	list	of	StringFields	ready	to	convert	it	into	LabeledPoints,	where	the	label	is	the	target
value-was	this	person	hired	or	not?	0	or	1-followed	by	an	array	that	consists	of	all	the	other	fields	that	we
care	about.	So,	this	is	how	you	create	a	LabeledPoint	that	the	DecisionTree	MLlib	class	can	consume.	So,	you



see	in	the	above	code	that	we're	converting	years	of	experience	from	a	string	to	an	integer	value,	and	for
all	the	yes/no	fields,	we're	calling	this	binary	function,	that	I	defined	up	at	the	top	of	the	code,	but	we
haven't	discussed	yet:

def	binary(YN):	

				if	(YN	==	'Y'):	

								return	1	

				else:	

								return	0	

All	it	does	is	convert	the	character	yes	to	1,	otherwise	it	returns	0.	So,	Y	will	become	1,	N	will	become
0.	Similarly,	I	have	a	mapEducation	function:

def	mapEducation(degree):	

				if	(degree	==	'BS'):	

								return	1	

				elif	(degree	=='MS'):	

								return	2	

				elif	(degree	==	'PhD'):	

								return	3	

				else:	

								return	0	

As	we	discussed	earlier,	this	simply	converts	different	types	of	degrees	to	an	ordinal	numeric	value	in
exactly	the	same	way	as	our	yes/no	fields.

As	a	reminder,	this	is	the	line	of	code	that	sent	us	running	through	those	functions:

trainingData	=	csvData.map(createLabeledPoints)	

At	this	point,	after	mapping	our	RDD	using	that	createLabeledPoints	function,	we	now	have	a	trainingData
RDD,	and	this	is	exactly	what	MLlib	wants	for	constructing	a	decision	tree.





Creating	a	test	candidate	and	building	our
decision	tree
Let's	create	a	little	test	candidate	we	can	use,	so	we	can	use	our	model	to	actually	predict	whether
someone	new	would	be	hired	or	not.	What	we're	going	to	do	is	create	a	test	candidate	that	consists	of	an
array	of	the	same	values	for	each	field	as	we	had	in	the	CSV	file:

testCandidates	=	[	array([10,	1,	3,	1,	0,	0])]	

Let's	quickly	compare	that	code	with	the	Excel	document	so	you	can	see	the	array	mapping:

Again,	we	need	to	map	these	back	to	their	original	column	representation,	so	that	10,	1,	3,	1,	0,	0	means
10	years	of	prior	experience,	currently	employed,	three	previous	employers,	a	BS	degree,	did	not	go	to	a
top-tier	school	and	did	not	do	an	internship.	We	could	actually	create	an	entire	RDD	full	of	candidates	if
we	wanted	to,	but	we'll	just	do	one	for	now.

Next,	we'll	use	parallelize	to	convert	that	list	into	an	RDD:

testData	=	sc.parallelize(testCandidates)	

Nothing	new	there.	Alright,	now	for	the	magic	let's	move	to	the	next	code	block:

model	=	DecisionTree.trainClassifier(trainingData,	numClasses=2,	

																				categoricalFeaturesInfo={1:2,	3:4,	4:2,	5:2},	

																				impurity='gini',	maxDepth=5,	maxBins=32)	

We	are	going	to	call	DecisionTree.trainClassifier,	and	this	is	what	will	actually	build	our	decision	tree	itself.
We	pass	in	our	trainingData,	which	is	just	an	RDD	full	of	LabeledPoint	arrays,	numClasses=2,	because	we	have,
basically,	a	yes	or	no	prediction	that	we're	trying	to	make,	will	this	person	be	hired	or	not?	The	next
parameter	is	called	categoricalFeaturesInfo,	and	this	is	a	Python	dictionary	that	maps	fields	to	the	number	of
categories	in	each	field.	So,	if	you	have	a	continuous	range	available	to	a	given	field,	like	the	number	of
years	of	experience,	you	wouldn't	specify	that	at	all	in	here,	but	for	fields	that	are	categorical	in	nature,
such	as	what	degree	do	they	have,	for	example,	that	would	say	fieldID3,	mapping	to	the	degree	attained,
which	has	four	different	possibilities:	no	education,	BS,	MS,	and	PhD.	For	all	of	the	yes/no	fields,	we're
mapping	those	to	2	possible	categories,	yes/no	or	0/1	is	what	we	converted	those	to.

Continuing	to	move	through	our	DecisionTree.trainClassifier	call,	we	are	going	to	use	the	'gini'	impurity
metric	as	we	measure	the	entropy.	We	have	a	maxDepth	of	5,	which	is	just	an	upper	boundary	on	how	far
we're	going	to	go,	that	can	be	larger	if	you	wish.	Finally,	maxBins	is	just	a	way	to	trade	off	computational
expense	if	you	can,	so	it	just	needs	to	at	least	be	the	maximum	number	of	categories	you	have	in	each
feature.	Remember,	nothing	really	happens	until	we	call	an	action,	so	we're	going	to	actually	use	this
model	to	make	a	prediction	for	our	test	candidate.



We	use	our	DecisionTree	model,	which	contains	a	decision	tree	that	was	trained	on	our	test	training	data,
and	we	tell	that	to	make	a	prediction	on	our	test	data:

predictions	=	model.predict(testData)	

print	('Hire	prediction:')	

results	=	predictions.collect()	

for	result	in	results:	

					print	(result)	

We'll	get	back	a	list	of	predictions	that	we	can	then	iterate	through.	So,	predict	returns	a	plain	old	Python
object	and	is	an	action	that	I	can	collect.	Let	me	rephrase	that	a	little	bit:	collect	will	return	a	Python	object
on	our	predictions,	and	then	we	can	iterate	through	every	item	in	that	list	and	print	the	result	of	the
prediction.

We	can	also	print	out	the	decision	tree	itself	by	using	toDebugString:

print('Learned	classification	tree	model:')	

print(model.toDebugString())	

That	will	actually	print	out	a	little	representation	of	the	decision	tree	that	it	created	internally,	that	you	can
follow	through	in	your	own	head.	So,	that's	kind	of	cool	too.





Running	the	script
Alright,	feel	free	to	take	some	time,	stare	at	this	script	a	little	bit	more,	digest	what's	going	on,	but,	if
you're	ready,	let's	move	on	and	actually	run	this	beast.	So,	to	do	so,	you	can't	just	run	it	directly	from
Canopy.	We're	going	to	go	to	the	Tools	menu	and	open	up	a	Canopy	Command	Prompt,	and	this	just	opens
up	a	Windows	command	prompt	with	all	the	necessary	environment	variables	in	place	for	running	Python
scripts	in	Canopy.	Make	sure	that	the	working	directory	is	the	directory	that	you	installed	all	of	the	course
materials	into.

All	we	need	to	do	is	call	spark-submit,	so	this	is	a	script	that	lets	you	run	Spark	scripts	from	Python,	and
then	the	name	of	the	script,	SparkDecisionTree.py.	That's	all	I	have	to	do.

spark-submit	SparkDecisionTree.py	

Hit	Return,	and	off	it	will	go.	Again,	if	I	were	doing	this	on	a	cluster	and	I	created	my	SparkConf
accordingly,	this	would	actually	get	distributed	to	the	entire	cluster,	but,	for	now,	we're	just	going	to	run	it
on	my	computer.	When	it's	finished,	you	should	see	the	below	output:

So,	in	the	above	image,	you	can	see	in	the	test	person	that	we	put	in	above,	we	have	a	prediction	that	this
person	would	be	hired,	and	I've	also	printed	out	the	decision	tree	itself,	so	it's	kind	of	cool.	Now,	let's
bring	up	that	Excel	document	once	more	so	we	can	compare	it	to	the	output:

We	can	walk	through	this	and	see	what	it	means.	So,	in	our	output	decision	tree	we	actually	end	up	with	a
depth	of	four,	with	nine	different	nodes,	and,	again,	if	we	remind	ourselves	what	these	different	fields



correlate	to,	the	way	to	read	this	is:	If	(feature	1	in	0),	so	that	means	if	the	employed	is	No,	then	we	drop
down	to	feature	5.	This	list	is	zero-based,	so	feature	5	in	our	Excel	document	is	internships.	We	can	run
through	the	tree	like	that:	this	person	is	not	currently	employed,	did	not	do	an	internship,	has	no	prior
years	of	experience	and	has	a	Bachelor's	degree,	we	would	not	hire	this	person.	Then	we	get	to	the	Else
clauses.	If	that	person	had	an	advanced	degree,	we	would	hire	them,	just	based	on	the	data	that	we	had
that	we	trained	it	on.	So,	you	can	work	out	what	these	different	feature	IDs	mean	back	to	your	original
source	data,	remember,	you	always	start	counting	at	0,	and	interpret	that	accordingly.	Note	that	all	the
categorical	features	are	expressed	in	Boolean	in	this	list	of	possible	categories	that	it	saw,	whereas
continuous	data	is	expressed	numerically	as	less	than	or	greater	than	relationships.

And	there	you	have	it,	an	actual	decision	tree	built	using	Spark	and	MLlib	that	actually	works	and	makes
sense.	Pretty	awesome	stuff.





K-Means	Clustering	in	Spark
Alright,	let's	look	at	another	example	of	using	Spark	in	MLlib,	and	this	time	we're	going	to	look	at	k-
means	clustering,	and	just	like	we	did	with	decision	trees,	we're	going	to	take	the	same	example	that	we
did	using	scikit-learn	and	we're	going	to	do	it	in	Spark	instead,	so	it	can	actually	scale	up	to	a	massive
Dataset.	So,	again,	I've	made	sure	to	close	out	of	everything	else,	and	I'm	going	to	go	into	my	book
materials	and	open	up	the	SparkKMeans	Python	script,	and	let's	study	what's	going	on	in.

Alright,	so	again,	we	begin	with	some	boilerplate	stuff.

from	pyspark.mllib.clustering	import	KMeans	

from	numpy	import	array,	random	

from	math	import	sqrt	

from	pyspark	import	SparkConf,	SparkContext	

from	sklearn.preprocessing	import	scale	

We're	going	to	import	the	KMeans	package	from	the	clustering	MLlib	package,	we're	going	to	import	array	and
random	from	numpy,	because,	again,	we're	free	to	use	whatever	you	want,	this	is	a	Python	script	at	the	end
of	the	day,	and	MLlib	often	does	require	numpy	arrays	as	input.	We're	going	to	import	the	sqrt	function	and	the
usual	boilerplate	stuff,	we	need	SparkConf	and	SparkContext,	pretty	much	every	time	from	pyspark.	We're	also
going	to	import	the	scale	function	from	scikit-learn.	Again,	it's	OK	to	use	scikit-learn	as	long	as	you	make
sure	its	installed	in	every	machine	that	you're	going	to	be	running	this	job	on,	and	also	don't	assume	that
scikit-learn	will	magically	scale	itself	up	just	because	you're	running	it	on	Spark.	But,	since	I'm	only	using
it	for	the	scaling	function,	it's	OK.	Alright,	let's	go	ahead	and	set	things	up.

I'm	going	to	create	a	global	variable	first:

K=5	

I'm	going	to	run	k-means	clustering	in	this	example	with	a	K	of	5,	meaning	with	five	different	clusters.	I'm
then	going	to	go	ahead	and	set	up	a	local	SparkConf	just	running	on	my	own	desktop:

conf	=	SparkConf().setMaster("local").setAppName("SparkKMeans")	

sc	=	SparkContext(conf	=	conf)	

I'm	going	to	set	the	name	of	my	application	to	SparkKMeans	and	create	a	SparkContext	object	that	I	can	then	use



to	create	RDDs	that	run	on	my	local	machine.	We'll	skip	past	the	createClusteredData	function	for	now,	and
go	to	the	first	line	of	code	that	gets	run.

data	=	sc.parallelize(scale(createClusteredData(100,	K)))		

1.	 The	first	thing	we're	going	to	do	is	create	an	RDD	by	parallelizing	in	some	fake	data	that	I'm
creating,	and	that's	what	the	createClusteredData	function	does.	Basically,	I'm	telling	you	to	create	100
data	points	clustered	around	K	centroids,	and	this	is	pretty	much	identical	to	the	code	that	we	looked
at	when	we	played	with	k-means	clustering	earlier	in	the	book.	If	you	want	a	refresher,	go	ahead	and
look	back	at	that	chapter.	Basically,	what	we're	going	to	do	is	create	a	bunch	of	random	centroids
around	which	we	normally	distribute	some	age	and	income	data.	So,	what	we're	doing	is	trying	to
cluster	people	based	on	their	age	and	income,	and	we	are	fabricating	some	data	points	to	do	that.
That	returns	a	numpy	array	of	our	fake	data.

2.	 Once	that	result	comes	back	from	createClusteredData,	I'm	calling	scale	on	it,	and	that	will	ensure	that
my	ages	and	incomes	are	on	comparable	scales.	Now,	remember	the	section	we	studied	saying	you
have	to	remember	about	data	normalization?	This	is	one	of	those	examples	where	it	is	important,	so
we	are	normalizing	that	data	with	scale	so	that	we	get	good	results	from	k-means.

3.	 And	finally,	we	parallelize	the	resulting	list	of	arrays	into	an	RDD	using	parallelize.	Now	our	data
RDD	contains	all	of	our	fake	data.	All	we	have	to	do,	and	this	is	even	easier	than	a	decision	tree,	is
call	KMeans.train	on	our	training	data.

clusters	=	KMeans.train(data,	K,	maxIterations=10,	

								initializationMode="random")	

We	pass	in	the	number	of	clusters	we	want,	our	K	value,	a	parameter	that	puts	an	upper
boundary	on	how	much	processing	it's	going	to	do;	we	then	tell	it	to	use	the	default
initialization	mode	of	k-means	where	we	just	randomly	pick	our	initial	centroids	for	our
clusters	before	we	start	iterating	on	them,	and	back	comes	the	model	that	we	can	use.	We're
going	to	call	that	clusters.

Alright,	now	we	can	play	with	that	cluster.

Let's	start	by	printing	out	the	cluster	assignments	for	each	one	of	our	points.	So,	we're	going	to	take	our
original	data	and	transform	it	using	a	lambda	function:

resultRDD	=	data.map(lambda	point:	clusters.predict(point)).cache()	

This	function	is	just	going	to	transform	each	point	into	the	cluster	number	that	is	predicted	from	our
model.	Again,	we're	just	taking	our	RDD	of	data	points.	We're	calling	clusters.predict	to	figure	out	which
cluster	our	k-means	model	is	assigning	them	to,	and	we're	just	going	to	put	the	results	in	our	resultRDD.
Now,	one	thing	I	want	to	point	out	here	is	this	cache	call,	in	the	above	code.

An	important	thing	when	you're	doing	Spark	is	that	any	time	you're	going	to	call	more	than	one	action	on
an	RDD,	it's	important	to	cache	it	first,	because	when	you	call	an	action	on	an	RDD,	Spark	goes	off	and
figures	out	the	DAG	for	it,	and	how	to	optimally	get	to	that	result.

It	will	go	off	and	actually	execute	everything	to	get	that	result.	So,	if	I	call	two	different	actions	on	the
same	RDD,	it	will	actually	end	up	evaluating	that	RDD	twice,	and	if	you	want	to	avoid	all	of	that	extra



work,	you	can	cache	your	RDD	in	order	to	make	sure	that	it	does	not	recompute	it	more	than	once.

By	doing	that,	we	make	sure	these	two	subsequent	operations	do	the	right	thing:

print	("Counts	by	value:")	

counts	=	resultRDD.countByValue()	

print	(counts)	

	

print	("Cluster	assignments:")	

results	=	resultRDD.collect()	

print	(results)	

In	order	to	get	an	actual	result,	what	we're	going	to	do	is	use	countByValue,	and	what	that	will	do	is	give	us
back	an	RDD	that	has	how	many	points	are	in	each	cluster.	Remember,	resultRDD	currently	has	mapped
every	individual	point	to	the	cluster	it	ended	up	with,	so	now	we	can	use	countByValue	to	just	count	up	how
many	values	we	see	for	each	given	cluster	ID.	We	can	then	easily	print	that	list	out.	And	we	can	actually
look	at	the	raw	results	of	that	RDD	as	well,	by	calling	collect	on	it,	and	that	will	give	me	back	every
single	points	cluster	assignment,	and	we	can	print	out	all	of	them.





Within	set	sum	of	squared	errors	(WSSSE)
Now,	how	do	we	measure	how	good	our	clusters	are?	Well,	one	metric	for	that	is	called	the	Within	Set
Sum	of	Squared	Errors,	wow,	that	sounds	fancy!	It's	such	a	big	term	that	we	need	an	abbreviation	for	it,
WSSSE.	All	it	is,	we	look	at	the	distance	from	each	point	to	its	centroid,	the	final	centroid	in	each	cluster,
take	the	square	of	that	error	and	sum	it	up	for	the	entire	Dataset.	It's	just	a	measure	of	how	far	apart	each
point	is	from	its	centroid.	Obviously,	if	there's	a	lot	of	error	in	our	model	then	they	will	tend	to	be	far
apart	from	the	centroids	that	might	apply,	so	for	that	we	need	a	higher	value	of	K,	for	example.	We	can	go
ahead	and	compute	that	value	and	print	it	out	with	the	following	code:

def	error(point):	

				center	=	clusters.centers[clusters.predict(point)]	

				return	sqrt(sum([x**2	for	x	in	(point	-	center)]))	

	

WSSSE	=	data.map(lambda	point:	error(point)).reduce(lambda	x,	y:	x	+	y)	

print("Within	Set	Sum	of	Squared	Error	=	"	+	str(WSSSE))	

First	of	all,	we	define	this	error	function	that	computes	the	squared	error	for	each	point.	It	just	takes	the
distance	from	the	point	to	the	centroid	center	of	each	cluster	and	sums	it	up.	To	do	that,	we're	taking	our
source	data,	calling	a	lambda	function	on	it	that	actually	computes	the	error	from	each	centroid	center
point,	and	then	we	can	chain	different	operations	together	here.

First,	we	call	map	to	compute	the	error	for	each	point.	Then	to	get	a	final	total	that	represents	the	entire
Dataset,	we're	calling	reduce	on	that	result.	So,	we're	doing	data.map	to	compute	the	error	for	each	point,	and
then	reduce	to	take	all	of	those	errors	and	add	them	all	together.	And	that's	what	the	little	lambda	function
does.	This	is	basically	a	fancy	way	of	saying,	"I	want	you	to	add	up	everything	in	this	RDD	into	one	final
result."	reduce	will	take	the	entire	RDD,	two	things	at	a	time,	and	combine	them	together	using	whatever
function	you	provide.	The	function	I'm	providing	it	above	is	"take	the	two	rows	that	I'm	combining
together	and	just	add	them	up."

If	we	do	that	throughout	every	entry	of	the	RDD,	we	end	up	with	a	final	summed-up	total.	It	might	seem
like	a	little	bit	of	a	convoluted	way	to	just	sum	up	a	bunch	of	values,	but	by	doing	it	this	way	we	are	able
to	make	sure	that	we	can	actually	distribute	this	operation	if	we	need	to.	We	could	actually	end	up
computing	the	sum	of	one	piece	of	the	data	on	one	machine,	and	a	sum	of	a	different	piece	over	on	another
machine,	and	then	take	those	two	sums	and	combine	them	together	into	a	final	result.	This	reduce	function	is
saying,	how	do	I	take	any	two	intermediate	results	from	this	operation,	and	combine	them	together?

Again,	feel	free	to	take	a	moment	and	stare	at	this	a	little	bit	longer	if	you	want	it	to	sink	in.	Nothing	really
fancy	going	on	here,	but	there	are	a	few	important	points:

We	introduced	the	use	of	a	cache	if	you	want	to	make	sure	that	you	don't	do	unnecessary
recomputations	on	an	RDD	that	you're	going	to	use	more	than	once.
We	introduced	the	use	of	the	reduce	function.
We	have	a	couple	of	interesting	mapper	functions	as	well	here,	so	there's	a	lot	to	learn	from	in	this
example.

At	the	end	of	the	day,	it	will	just	do	k-means	clustering,	so	let's	go	ahead	and	run	it.





Running	the	code
Go	to	the	Tools	menu,	Canopy	Command	Prompt,	and	type	in:

spark-submit	SparkKMeans.py		

Hit	Return,	and	off	it	will	go.	In	this	situation,	you	might	have	to	wait	a	few	moments	for	the	output	to
appear	in	front	of	you,	but	you	should	see	something	like	this:

It	worked,	awesome!	So	remember,	the	output	that	we	asked	for	was,	first	of	all,	a	count	of	how	many
points	ended	up	in	each	cluster.	So,	this	is	telling	us	that	cluster	0	had	21	points	in	it,	cluster	1	had	20
points	in	it,	and	so	on	and	so	forth.	It	ended	up	pretty	evenly	distributed,	so	that's	a	good	sign.

Next,	we	printed	out	the	cluster	assignments	for	each	individual	point,	and,	if	you	remember,	the	original
data	that	fabricated	this	data	did	it	sequentially,	so	it's	actually	a	good	thing	that	you	see	all	of	the	3s
together,	and	all	the	1s	together,	and	all	the	4s	together,	it	looks	like	it	started	to	get	a	little	bit	confused
with	the	0s	and	2s,	but	by	and	large,	it	seems	to	have	done	a	pretty	good	job	of	uncovering	the	clusters	that
we	created	the	data	with	originally.

And	finally,	we	computed	the	WSSSE	metric,	it	came	out	to	19.97	in	this	example.	So,	if	you	want	to	play
around	with	this	a	little	bit,	I	encourage	you	to	do	so.	You	can	see	what	happens	to	that	error	metric	as	you
increase	or	decrease	the	values	of	K,	and	think	about	why	that	may	be.	You	can	also	experiment	with	what
happens	if	you	don't	normalize	all	the	data,	does	that	actually	affect	your	results	in	a	meaningful	way?	Is
that	actually	an	important	thing	to	do?	And	you	can	also	experiment	with	the	maxIterations	parameter	on	the
model	itself	and	get	a	good	feel	of	what	that	actually	does	to	the	final	results,	and	how	important	it	is.	So,
feel	free	to	mess	around	with	it	and	experiment	away.	That's	k-means	clustering	done	with	MLlib	and
Spark	in	a	scalable	manner.	Very	cool	stuff.





TF-IDF
So,	our	final	example	of	MLlib	is	going	to	be	using	something	called	Term	Frequency	Inverse	Document
Frequency,	or	TF-IDF,	which	is	the	fundamental	building	block	of	many	search	algorithms.	As	usual,	it
sounds	complicated,	but	it's	not	as	bad	as	it	sounds.

So,	first,	let's	talk	about	the	concepts	of	TF-IDF,	and	how	we	might	go	about	using	that	to	solve	a	search
problem.	And	what	we're	actually	going	to	do	with	TF-IDF	is	create	a	rudimentary	search	engine	for
Wikipedia	using	Apache	Spark	in	MLlib.	How	awesome	is	that?	Let's	get	started.

TF-IDF	stands	for	Term	Frequency	and	Inverse	Document	Frequency,	and	these	are	basically	two	metrics
that	are	closely	interrelated	for	doing	search	and	figuring	out	the	relevancy	of	a	given	word	to	a	document,
given	a	larger	body	of	documents.	So,	for	example,	every	article	on	Wikipedia	might	have	a	term
frequency	associated	with	it,	every	page	on	the	Internet	could	have	a	term	frequency	associated	with	it	for
every	word	that	appears	in	that	document.	Sounds	fancy,	but,	as	you'll	see,	it's	a	fairly	simple	concept.

All	Term	Frequency	means	is	how	often	a	given	word	occurs	in	a	given	document.	So,	within	one
web	page,	within	one	Wikipedia	article,	within	one	whatever,	how	common	is	a	given	word	within
that	document?	You	know,	what	is	the	ratio	of	that	word's	occurrence	rate	throughout	all	the	words	in
that	document?	That's	it.	That's	all	term	frequency	is.
Document	frequency,	is	the	same	idea,	but	this	time	it	is	the	frequency	of	that	word	across	the	entire
corpus	of	documents.	So,	how	often	does	this	word	occur	throughout	all	of	the	documents	that	I	have,
all	the	web	pages,	all	of	the	articles	on	Wikipedia,	whatever.	For	example,	common	words	like	"a"
or	"the"	would	have	a	very	high	document	frequency,	and	I	would	expect	them	to	also	have	a	very
high	term	frequency,	but	that	doesn't	necessarily	mean	they're	relevant	to	a	given	document.

You	can	kind	of	see	where	we're	going	with	this.	So,	let's	say	we	have	a	very	high	term	frequency	and	a
very	low	document	frequency	for	a	given	word.	The	ratio	of	these	two	things	can	give	me	a	measure	of	the
relevance	of	that	word	to	the	document.	So,	if	I	see	a	word	that	occurs	very	often	in	a	given	document,	but
not	very	often	in	the	overall	space	of	documents,	then	I	know	that	this	word	probably	conveys	some
special	meaning	to	this	particular	document.	It	might	convey	what	this	document	is	actually	about.

So,	that's	TF-IDF.	It	just	stands	for	Term	Frequency	x	Inverse	Document	Frequency,	which	is	just	a	fancy
way	of	saying	term	frequency	over	document	frequency,	which	is	just	a	fancy	way	of	saying	how	often
does	this	word	occur	in	this	document	compared	to	how	often	it	occurs	in	the	entire	body	of	documents?
It's	that	simple.





TF-IDF	in	practice
In	practice,	there	are	a	few	little	nuances	to	how	we	use	this.	For	example,	we	use	the	actual	log	of	the
inverse	document	frequency	instead	of	the	raw	value,	and	that's	because	word	frequencies	in	reality	tend
to	be	distributed	exponentially.	So,	by	taking	the	log,	we	end	up	with	a	slightly	better	weighting	of	words,
given	their	overall	popularity.	There	are	some	limitations	to	this	approach,	obviously,	one	is	that	we
basically	assume	a	document	is	nothing	more	than	a	bagful	of	words,	we	assume	there	are	no	relationships
between	the	words	themselves.	And,	obviously,	that's	not	always	the	case,	and	actually	parsing	them	out
can	be	a	good	part	of	the	work,	because	you	have	to	deal	with	things	like	synonyms	and	various	tenses	of
words,	abbreviations,	capitalizations,	misspellings,	and	so	on.	This	gets	back	to	the	idea	of	cleaning	your
data	being	a	large	part	of	your	job	as	a	data	scientist,	and	it's	especially	true	when	you're	dealing	with
natural	language	processing	stuff.	Fortunately,	there	are	some	libraries	out	there	that	can	help	you	with
this,	but	it	is	a	real	problem	and	it	will	affect	the	quality	of	your	results.

Another	implementation	trick	that	we	use	with	TF-IDF	is,	instead	of	storing	actual	string	words	with	their
term	frequencies	and	inverse	document	frequency,	to	save	space	and	make	things	more	efficient,	we
actually	map	every	word	to	a	numerical	value,	a	hash	value	we	call	it.	The	idea	is	that	we	have	a	function
that	can	take	any	word,	look	at	its	letters,	and	assign	that,	in	some	fairly	well-distributed	manner,	to	a	set
of	numbers	in	a	range.	That	way,	instead	of	using	the	word	"represented",	we	might	assign	that	a	hash
value	of	10,	and	we	can	then	refer	to	the	word	"represented"	as	"10"	from	now	on.	Now,	if	the	space	of
your	hash	values	isn't	large	enough,	you	could	end	up	with	different	words	being	represented	by	the	same
number,	which	sounds	worse	than	it	is.	But,	you	know,	you	want	to	make	sure	that	you	have	a	fairly	large
hash	space	so	that	is	unlikely	to	happen.	Those	are	called	hash	collisions.	They	can	cause	issues,	but,	in
reality,	there's	only	so	many	words	that	people	commonly	use	in	the	English	language.	You	can	get	away
with	100,000	or	so	and	be	just	fine.

Doing	this	at	scale	is	the	hard	part.	If	you	want	to	do	this	over	all	of	Wikipedia,	then	you're	going	to	have
to	run	this	on	a	cluster.	But	for	the	sake	of	argument,	we	are	just	going	to	run	this	on	our	own	desktop	for
now,	using	a	small	sample	of	Wikipedia	data.





Using	TF-	IDF
How	do	we	turn	that	into	an	actual	search	problem?	Once	we	have	TF-IDF,	we	have	this	measure	of	each
word's	relevancy	to	each	document.	What	do	we	do	with	it?	Well,	one	thing	you	could	do	is	compute	TF-
IDF	for	every	word	that	we	encounter	in	the	entire	body	of	documents	that	we	have,	and	then,	let's	say	we
want	to	search	for	a	given	term,	a	given	word.	Let's	say	we	want	to	search	for	"what	Wikipedia	article	in
my	set	of	Wikipedia	articles	is	most	relevant	to	Gettysburg?"	I	could	sort	all	the	documents	by	their	TF-
IDF	score	for	Gettysburg,	and	just	take	the	top	results,	and	those	are	my	search	results	for	Gettysburg.
That's	it.	Just	take	your	search	word,	compute	TF-IDF,	take	the	top	results.	That's	it.

Obviously,	in	the	real	world	there's	a	lot	more	to	search	than	that.	Google	has	armies	of	people	working
on	this	problem	and	it's	way	more	complicated	in	practice,	but	this	will	actually	give	you	a	working
search	engine	algorithm	that	produces	reasonable	results.	Let's	go	ahead	and	dive	in	and	see	how	it	all
works.

	





Searching	wikipedia	with	Spark	MLlib
We're	going	to	build	an	actual	working	search	algorithm	for	a	piece	of	Wikipedia	using	Apache	Spark	in
MLlib,	and	we're	going	to	do	it	all	in	less	than	50	lines	of	code.	This	might	be	the	coolest	thing	we	do	in
this	entire	book!

Go	into	your	course	materials	and	open	up	the	TF-IDF.py	script,	and	that	should	open	up	Canopy	with	the
following	code:	

Now,	step	back	for	a	moment	and	let	it	sink	in	that	we're	actually	creating	a	working	search	algorithm,
along	with	a	few	examples	of	using	it	in	less	than	50	lines	of	code	here,	and	it's	scalable.	I	could	run	this
on	a	cluster.	It's	kind	of	amazing.	Let's	step	through	the	code.



from	pyspark	import	SparkConf,	SparkContext	from	pyspark.mllib.feature	import
HashingTF

from	pyspark.mllib.feature	import	IDF

So,	this	is	what	computes	the	term	frequencies	(TF)	and	inverse	document	frequencies
(IDF)	within	our	documents.





Creating	the	initial	RDD
We'll	start	off	with	our	boilerplate	Spark	stuff	that	creates	a	local	SparkConfiguration	and	a	SparkContext,	from
which	we	can	then	create	our	initial	RDD.

conf	=	SparkConf().setMaster("local").setAppName("SparkTFIDF")	

sc	=	SparkContext(conf	=	conf)	

Next,	we're	going	to	use	our	SparkContext	to	create	an	RDD	from	subset-small.tsv.

rawData	=	sc.textFile("e:/sundog-consult/Udemy/DataScience/subset-small.tsv")	

This	is	a	file	containing	tab-separated	values,	and	it	represents	a	small	sample	of	Wikipedia	articles.
Again,	you'll	need	to	change	your	path	as	shown	in	the	preceding	code	as	necessary	for	wherever	you
installed	the	course	materials	for	this	book.

That	gives	me	back	an	RDD	where	every	document	is	in	each	line	of	the	RDD.	The	tsv	file	contains	one
entire	Wikipedia	document	on	every	line,	and	I	know	that	each	one	of	those	documents	is	split	up	into
tabular	fields	that	have	various	bits	of	metadata	about	each	article.

The	next	thing	I'm	going	to	do	is	split	those	up:

fields	=	rawData.map(lambda	x:	x.split("\t"))	

I'm	going	to	split	up	each	document	based	on	their	tab	delimiters	into	a	Python	list,	and	create	a	new	fields
RDD	that,	instead	of	raw	input	data,	now	contains	Python	lists	of	each	field	in	that	input	data.

Finally,	I'm	going	to	map	that	data,	take	in	each	list	of	fields,	extract	field	number	three	x[3],	which	I
happen	to	know	is	the	body	of	the	article	itself,	the	actual	article	text,	and	I'm	in	turn	going	to	split	that
based	on	spaces:

documents	=	fields.map(lambda	x:	x[3].split("	"))	

What	x[3]	does	is	extract	the	body	of	the	text	from	each	Wikipedia	article,	and	split	it	up	into	a	list	of
words.	My	new	documents	RDD	has	one	entry	for	every	document,	and	every	entry	in	that	RDD	contains	a
list	of	words	that	appear	in	that	document.	Now,	we	actually	know	what	to	call	these	documents	later	on
when	we're	evaluating	the	results.

I'm	also	going	to	create	a	new	RDD	that	stores	the	document	names:

documentNames	=	fields.map(lambda	x:	x[1])	

All	that	does	is	take	that	same	fields	RDD	and	uses	this	map	function	to	extract	the	document	name,	which	I
happen	to	know	is	in	field	number	one.

So,	I	now	have	two	RDDs,	documents,	which	contains	lists	of	words	that	appear	in	each	document,	and
documentNames,	which	contains	the	name	of	each	document.	I	also	know	that	these	are	in	the	same	order,	so	I
can	actually	combine	these	together	later	on	to	look	up	the	name	for	a	given	document.





Creating	and	transforming	a	HashingTF	object
Now,	the	magic	happens.	The	first	thing	we're	going	to	do	is	create	a	HashingTF	object,	and	we're	going	to
pass	in	a	parameter	of	100,000.	This	means	that	I'm	going	to	hash	every	word	into	one	of	100,000
numerical	values:

hashingTF	=	HashingTF(100000)		

Instead	of	representing	words	internally	as	strings,	which	is	very	inefficient,	it's	going	to	try	to,	as	evenly
as	possible,	distribute	each	word	to	a	unique	hash	value.	I'm	giving	it	up	to	100,000	hash	values	to	choose
from.	Basically,	this	is	mapping	words	to	numbers	at	the	end	of	the	day.

Next,	I'm	going	to	call	transform	on	hashingTF	with	my	actual	RDD	of	documents:

tf	=	hashingTF.transform(documents)	

That's	going	to	take	my	list	of	words	in	every	document	and	convert	it	to	a	list	of	hash	values,	a	list	of
numbers	that	represent	each	word	instead.

This	is	actually	represented	as	a	sparse	vector	at	this	point	to	save	even	more	space.	So,	not	only	have	we
converted	all	of	our	words	to	numbers,	but	we've	also	stripped	out	any	missing	data.	In	the	event	that	a
word	does	not	appear	in	a	document	where	you're	not	storing	the	fact	that	word	does	not	appear
explicitly,	it	saves	even	more	space.





Computing	the	TF-IDF	score
To	actually	compute	the	TF-IDF	score	for	each	word	in	each	document,	we	first	cache	this	tf	RDD.

tf.cache()	

We	do	that	because	we're	going	to	use	it	more	than	once.	Next,	we	use	IDF(minDocFreq=2),	meaning	that	we're
going	to	ignore	any	word	that	doesn't	appear	at	least	twice:	idf	=	IDF(minDocFreq=2).fit(tf)

We	call	fit	on	tf,	and	then	in	the	next	line	we	call	transform	on	tf:	tfidf	=	idf.transform(tf)

What	we	end	up	with	here	is	an	RDD	of	the	TF-IDF	score	for	each	word	in	each	document.





Using	the	Wikipedia	search	engine	algorithm
Let's	try	and	put	the	algorithm	to	use.	Let's	try	to	look	up	the	best	article	for	the	word	Gettysburg.	If
you're	not	familiar	with	US	history,	that's	where	Abraham	Lincoln	gave	a	famous	speech.	So,	we	can
transform	the	word	Gettysburg	into	its	hash	value	using	the	following	code:	gettysburgTF	=
hashingTF.transform(["Gettysburg"])	gettysburgHashValue	=	int(gettysburgTF.indices[0])

We	will	then	extract	the	TF-IDF	score	for	that	hash	value	into	a	new	RDD	for	each	document:

gettysburgRelevance	=	tfidf.map(lambda	x:	x[gettysburgHashValue])		

What	this	does	is	extract	the	TF-IDF	score	for	Gettysburg,	from	the	hash	value	it	maps	to	for	every
document,	and	stores	that	in	this	gettysburgRelevance	RDD.

We	then	combine	that	with	the	documentNames	so	we	can	see	the	results:

zippedResults	=	gettysburgRelevance.zip(documentNames)		

Finally,	we	can	print	out	the	answer:

print	("Best	document	for	Gettysburg	is:")	

print	(zippedResults.max())	





Running	the	algorithm
So,	let's	go	run	that	and	see	what	happens.	As	usual,	to	run	the	Spark	script,	we're	not	going	to	just	hit	the
play	icon.	We	have	to	go	to	Tools>Canopy	Command	Prompt.	In	the	Command	Prompt	that	opens	up,	we
will	type	in	spark-submit	TF-IDF.py,	and	off	it	goes.

We	are	asking	it	to	chunk	through	quite	a	bit	of	data,	even	though	it's	a	small	sample	of	Wikipedia	it's	still
a	fair	chunk	of	information,	so	it	might	take	a	while.	Let's	see	what	comes	back	for	the	best	document
match	for	Gettysburg,	what	document	has	the	highest	TF-IDF	score?

It's	Abraham	Lincoln!	Isn't	that	awesome?	We	just	made	an	actual	search	engine	that	actually	works,	in
just	a	few	lines	of	code.

And	there	you	have	it,	an	actual	working	search	algorithm	for	a	little	piece	of	Wikipedia	using	Spark	in
MLlib	and	TF-IDF.	And	the	beauty	is	we	can	actually	scale	that	up	to	all	of	Wikipedia	if	we	wanted	to,	if
we	had	a	cluster	large	enough	to	run	it.

Hopefully	we	got	your	interest	up	there	in	Spark,	and	you	can	see	how	it	can	be	applied	to	solve	what	can
be	pretty	complicated	machine	learning	problems	in	a	distributed	manner.	So,	it's	a	very	important	tool,
and	I	want	to	make	sure	you	don't	get	through	this	book	on	data	science	without	at	least	knowing	the
concepts	of	how	Spark	can	be	applied	to	big	data	problems.	So,	when	you	need	to	move	beyond	what	one
computer	can	do,	remember,	Spark	is	at	your	disposal.





Using	the	Spark	2.0	DataFrame	API	for	MLlib
This	chapter	was	originally	produced	for	Spark	1,	so	let's	talk	about	what's	new	in	Spark	2,	and	what	new
capabilities	exist	in	MLlib	now.

So,	the	main	thing	with	Spark	2	is	that	they	moved	more	and	more	toward	Dataframes	and	Datasets.
Datasets	and	Dataframes	are	kind	of	used	interchangeably	sometimes.	Technically	a	dataframe	is	a
Dataset	of	row	objects,	they're	kind	of	like	RDDs,	but	the	only	difference	is	that,	whereas	an	RDD	just
contains	unstructured	data,	a	Dataset	has	a	defined	schema	to	it.

A	Dataset	knows	ahead	of	time	exactly	what	columns	of	information	exists	in	each	row,	and	what	types
those	are.	Because	it	knows	about	the	actual	structure	of	that	Dataset	ahead	of	time,	it	can	optimize	things
more	efficiently.	It	also	lets	us	think	of	the	contents	of	this	Dataset	as	a	little,	mini	database,	well,	actually,
a	very	big	database	if	it's	on	a	cluster.	That	means	we	can	do	things	like	issue	SQL	queries	on	it.

This	creates	a	higher-level	API	with	which	we	can	query	and	analyze	massive	Datasets	on	a	Spark
cluster.	It's	pretty	cool	stuff.	It's	faster,	it	has	more	opportunities	for	optimization,	and	it	has	a	higher-level
API	that's	often	easier	to	work	with.





How	Spark	2.0	MLlib	works
Going	forward	in	Spark	2.0,	MLlib	is	pushing	dataframes	as	its	primary	API.	This	is	the	way	of	the	future,
so	let's	take	a	look	at	how	it	works.	I've	gone	ahead	and	opened	up	the	SparkLinearRegression.py	file	in
Canopy,	as	shown	in	the	following	figure,	so	let's	walk	through	it	a	little	bit:	

As	you	see,	for	one	thing,	we're	using	ml	instead	of	MLlib,	and	that's	because	the	new	dataframe-based	API
is	in	there.





Implementing	linear	regression
In	this	example,	what	we're	going	to	do	is	implement	linear	regression,	and	linear	regression	is	just	a	way
of	fitting	a	line	to	a	set	of	data.	What	we're	going	to	do	in	this	exercise	is	take	a	bunch	of	fabricated	data
that	we	have	in	two	dimensions,	and	try	to	fit	a	line	to	it	with	a	linear	model.

We're	going	to	separate	our	data	into	two	sets,	one	for	building	the	model	and	one	for	evaluating	the
model,	and	we'll	compare	how	well	this	linear	model	does	at	actually	predicting	real	values.	First	of	all,
in	Spark	2,	if	you're	going	to	be	doing	stuff	with	the	SparkSQL	interface	and	using	Datasets,	you've	got	to	be
using	a	SparkSession	object	instead	of	a	SparkContext.	To	set	one	up,	you	do	the	following:

spark	=	SparkSession.builder.config("spark.sql.warehouse.dir",	"file:///C:/temp").appName("LinearRegression").getOrCreate()	

Note	that	the	middle	bit	is	only	necessary	on	Windows	and	in	Spark	2.0.	It	kind	of	works
around	a	little	bug	that	they	have,	to	be	honest.	So,	if	you're	on	Windows,	make	sure	you
have	a	C:/temp	folder.	If	you	want	to	run	this,	go	create	that	now	if	you	need	to.	If	you're
not	on	Windows,	you	can	delete	that	whole	middle	section	to	leave:	spark	=
SparkSession.builder.appName("LinearRegression").getOrCreate().

Okay,	so	you	can	say	spark,	give	it	an	appName	and	getOrCreate().

This	is	interesting,	because	once	you've	created	a	Spark	session,	if	it	terminates	unexpectedly,	you	can
actually	recover	from	that	the	next	time	that	you	run	it.	So,	if	we	have	a	checkpoint	directory,	it	can
actually	restart	where	it	left	off	using	getOrCreate.

Now,	we're	going	to	use	this	regression.txt	file	that	I	have	included	with	the	course	materials:

inputLines	=	spark.sparkContext.textFile("regression.txt")		

That	is	just	a	text	file	that	has	comma-delimited	values	of	two	columns,	and	they're	just	two	columns	of,
more	or	less	randomly,	linearly	correlated	data.	It	can	represent	whatever	you	want.	Let's	imagine	that	it
represents	heights	and	weights,	for	example.	So,	the	first	column	might	represent	heights,	the	second
column	might	represent	weights.

In	the	lingo	of	machine	learning,	we	talk	about	labels	and	features,	where	labels	are
usually	the	thing	that	you're	trying	to	predict,	and	features	are	a	set	of	known	attributes
of	the	data	that	you	use	to	make	a	prediction	from.

In	this	example,	maybe	heights	are	the	labels	and	the	features	are	the	weights.	Maybe	we're	trying	to
predict	heights	based	on	your	weight.	It	can	be	anything,	it	doesn't	matter.	This	is	all	normalized	down	to
data	between	-1	and	1.	There's	no	real	meaning	to	the	scale	of	the	data	anywhere,	you	can	pretend	it
means	anything	you	want,	really.

To	use	this	with	MLlib,	we	need	to	transform	our	data	into	the	format	it	expects:

data	=	inputLines.map(lambda	x:	x.split(",")).map(lambda	x:	(float(x[0]),	Vectors.dense(float(x[1]))))		



The	first	thing	we're	going	to	do	is	split	that	data	up	with	this	map	function	that	just	splits	each	line	into	two
distinct	values	in	a	list,	and	then	we're	going	to	map	that	to	the	format	that	MLlib	expects.	That's	going	to
be	a	floating	point	label,	and	then	a	dense	vector	of	the	feature	data.

In	this	case,	we	only	have	one	bit	of	feature	data,	the	weight,	so	we	have	a	vector	that	just	has	one	thing	in
it,	but	even	if	it's	just	one	thing,	the	MLlib	linear	regression	model	requires	a	dense	vector	there.	This	is
like	a	labeledPoint	in	the	older	API,	but	we	have	to	do	it	the	hard	way	here.

Next,	we	need	to	actually	assign	names	to	those	columns.	Here's	the	syntax	for	doing	that:

colNames	=	["label",	"features"]	

df	=	data.toDF(colNames)	

We're	going	to	tell	MLlib	that	these	two	columns	in	the	resulting	RDD	actually	correspond	to	the	label	and
the	features,	and	then	I	can	convert	that	RDD	to	a	DataFrame	object.	At	this	point,	I	have	an	actual
dataframe	or,	if	you	will,	a	Dataset	that	contains	two	columns,	label	and	features,	where	the	label	is	a
floating	point	height,	and	the	features	column	is	a	dense	vector	of	floating	point	weights.	That	is	the	format
required	by	MLlib,	and	MLlib	can	be	pretty	picky	about	this	stuff,	so	it's	important	that	you	pay	attention
to	these	formats.

Now,	like	I	said,	we're	going	to	split	our	data	in	half.

trainTest	=	df.randomSplit([0.5,	0.5])	

trainingDF	=	trainTest[0]	

testDF	=	trainTest[1]	

We're	going	to	do	a	50/50	split	between	training	data	and	test	data.	This	returns	back	two	dataframes,	one
that	I'm	going	to	use	to	actually	create	my	model,	and	one	that	I'm	going	to	use	to	evaluate	my	model.

I	will	next	create	my	actual	linear	regression	model	with	a	few	standard	parameters	here	that	I've	set.

lir	=	LinearRegression(maxIter=10,	regParam=0.3,	elasticNetParam=0.8)	

We're	going	to	call	lir	=	LinearRegression,	and	then	I	will	fit	that	model	to	the	set	of	data	that	I	held	aside	for
training,	the	training	data	frame:

model	=	lir.fit(trainingDF)	

That	gives	me	back	a	model	that	I	can	use	to	make	predictions	from.

Let's	go	ahead	and	do	that.

fullPredictions	=	model.transform(testDF).cache()	

I	will	call	model.transform(testDF),	and	what	that's	going	to	do	is	predict	the	heights	based	on	the	weights	in
my	testing	Dataset.	I	actually	have	the	known	labels,	the	actual,	correct	heights,	and	this	is	going	to	add	a
new	column	to	that	dataframe	called	predictions,	that	has	the	predicted	values	based	on	that	linear	model.

I'm	going	to	cache	those	results,	and	now	I	can	just	extract	them	and	compare	them	together.	So,	let's	pull
out	the	prediction	column,	just	using	select	like	you	would	in	SQL,	and	then	I'm	going	to	actually	transform
that	dataframe	and	pull	out	the	RDD	from	it,	and	use	that	to	map	it	to	just	a	plain	old	RDD	full	of	floating



point	heights	in	this	case:

predictions	=	fullPredictions.select("prediction").rdd.map(lambda	x:	x[0])	

These	are	the	predicted	heights.	Next,	we're	going	to	get	the	actual	heights	from	the	label	column:

labels	=	fullPredictions.select("label").rdd.map(lambda	x:	x[0])	

Finally,	we	can	zip	them	back	together	and	just	print	them	out	side	by	side	and	see	how	well	it	does:

predictionAndLabel	=	predictions.zip(labels).collect()	

	

for	prediction	in	predictionAndLabel:	

				print(prediction)	

	

spark.stop()	

This	is	kind	of	a	convoluted	way	of	doing	it;	I	did	this	to	be	more	consistent	with	the	previous	example,
but	a	simpler	approach	would	be	to	just	actually	select	prediction	and	label	together	into	a	single	RDD
that	maps	out	those	two	columns	together	and	then	I	don't	have	to	zip	them	up,	but	either	way	it	works.
You'll	also	note	that	right	at	the	end	there	we	need	to	stop	the	Spark	session.

So	let's	see	if	it	works.	Let's	go	up	to	Tools,	Canopy	Command	Prompt,	and	we'll	type	in	spark-submit
SparkLinearRegression.py	and	let's	see	what	happens.

There's	a	little	bit	more	upfront	time	to	actually	run	these	APIs	with	Datasets,	but	once	they	get	going,
they're	very	fast.	Alright,	there	you	have	it.

Here	we	have	our	actual	and	predicted	values	side	by	side,	and	you	can	see	that	they're	not	too	bad.	They
tend	to	be	more	or	less	in	the	same	ballpark.	There	you	have	it,	a	linear	regression	model	in	action	using
Spark	2.0,	using	the	new	dataframe-based	API	for	MLlib.	More	and	more,	you'll	be	using	these	APIs
going	forward	with	MLlib	in	Spark,	so	make	sure	you	opt	for	these	when	you	can.	Alright,	that's	MLlib	in
Spark,	a	way	of	actually	distributing	massive	computing	tasks	across	an	entire	cluster	for	doing	machine
learning	on	big	Datasets.	So,	good	skill	to	have.	Let's	move	on.





Summary
In	this	chapter,	we	started	with	installing	Spark,	then	moved	to	introducing	Spark	in	depth	while
understanding	how	Spark	works	in	combination	with	RDDs.	We	also	walked	through	various	ways	of
creating	RDDs	while	exploring	different	operations.	We	then	introduced	MLlib,	and	stepped	through	some
detailed	examples	of	decision	trees	and	K-Means	Clustering	in	Spark.	We	then	pulled	off	our
masterstroke	of	creating	a	search	engine	in	just	a	few	lines	of	code	using	TF-IDF.	Finally,	we	looked	at
the	new	features	of	Spark	2.0.

In	the	next	chapter,	we'll	take	a	look	at	A/B	testing	and	experimental	design.

	



	



Testing	and	Experimental	Design
	

In	this	chapter,	we'll	see	the	concept	of	A/B	testing.	We'll	go	through	the	t-test,	the	t-statistic,	and	the	p-
value,	all	useful	tools	for	determining	whether	a	result	is	actually	real	or	a	result	of	random	variation.
We'll	dive	into	some	real	examples	and	get	our	hands	dirty	with	some	Python	code	and	compute	the	t-
statistics	and	p-values.

Following	that,	we'll	look	into	how	long	you	should	run	an	experiment	for	before	reaching	a	conclusion.
Finally,	we'll	discuss	the	potential	issues	that	can	harm	the	results	of	your	experiment	and	may	cause	you
to	reach	the	wrong	conclusion.

We'll	cover	the	following	topics:

A/B	testing	concepts
T-test	and	p-value
Measuring	t-statistics	and	p-values	using	Python
Determining	how	long	to	run	an	experiment
A/B	test	gotchas

	

	





A/B	testing	concepts
If	you	work	as	a	data	scientist	at	a	web	company,	you'll	probably	be	asked	to	spend	some	time	analyzing
the	results	of	A/B	tests.	These	are	basically	controlled	experiments	on	a	website	to	measure	the	impact	of
a	given	change.	So,	let's	talk	about	what	A/B	tests	are	and	how	they	work.

	





A/B	tests
If	you're	going	to	be	a	data	scientist	at	a	big	tech	web	company,	this	is	something	you're	going	to	definitely
be	involved	in,	because	people	need	to	run	experiments	to	try	different	things	on	a	website	and	measure
the	results	of	it,	and	that's	actually	not	as	straightforward	as	most	people	think	it	is.

What	is	an	A/B	test?	Well,	it's	a	controlled	experiment	that	you	usually	run	on	a	website,	it	can	be	applied
to	other	contexts	as	well,	but	usually	we're	talking	about	a	website,	and	we're	going	to	test	the
performance	of	some	change	to	that	website,	versus	the	way	it	was	before.

You	basically	have	a	control	set	of	people	that	see	the	old	website,	and	a	test	group	of	people	that	see	the
change	to	the	website,	and	the	idea	is	to	measure	the	difference	in	behavior	between	these	two	groups	and
use	that	data	to	actually	decide	whether	this	change	was	beneficial	or	not.

For	example,	I	own	a	business	that	has	a	website,	we	license	software	to	people,	and	right	now	I	have	a
nice,	friendly,	orange	button	that	people	click	on	when	they	want	to	buy	a	license	as	shown	on	the	left	in
the	following	figure.	But	what	would	happen	if	I	changed	the	color	of	that	button	to	blue,	as	shown	on	the
right?

So	in	this	example,	if	I	want	to	find	out	whether	blue	would	be	better.	How	do	I	know?

I	mean,	intuitively,	maybe	that	might	capture	people's	attention	more,	or	intuitively,	maybe	people	are
more	used	to	seeing	orange	buy	buttons	and	are	more	likely	to	click	on	that,	I	could	spin	that	either	way,
right?	So,	my	own	internal	biases	or	preconceptions	don't	really	matter.	What	matters	is	how	people	react
to	this	change	on	my	actual	website,	and	that's	what	an	A/B	test	does.

A/B	testing	will	split	people	up	into	people	who	see	the	orange	button,	and	people	who	see	the	blue
button,	and	I	can	then	measure	the	behavior	between	these	two	groups	and	how	they	might	differ,	and
make	my	decision	on	what	color	my	buttons	should	be	based	on	that	data.

You	can	test	all	sorts	of	things	with	an	A/B	test.	These	include:

Design	changes:	These	can	be	changes	in	the	color	of	a	button,	the	placement	of	a	button,	or	the
layout	of	the	page.
UI	flow:	So,	maybe	you're	actually	changing	the	way	that	your	purchase	pipeline	works	and	how
people	check	out	on	your	website,	and	you	can	actually	measure	the	effect	of	that.
Algorithmic	changes:	Let's	consider	the	example	of	doing	movie	recommendations	that	we
discussed	in	Chapter	6,	Recommender	Systems.	Maybe	I	want	to	test	one	algorithm	versus	another.



Instead	of	relying	on	error	metrics	and	my	ability	to	do	a	train	test,	what	I	really	care	about	is	driving
purchases	or	rentals	or	whatever	it	is	on	this	website.

The	A/B	test	can	let	me	directly	measure	the	impact	of	this	algorithm	on	the	end	result	that	I
actually	care	about,	and	not	just	my	ability	to	predict	movies	that	other	people	have	already
seen.

And	anything	else	you	can	dream	up	too,	really,	any	change	that	impacts	how	users	interact	with
your	site	is	worth	testing.	Maybe	it's	even,	making	the	website	faster,	or	it	could	be	anything.

Pricing	changes:	This	one	gets	a	little	bit	controversial.	You	know,	in	theory,	you	can	experiment
with	different	price	points	using	an	A/B	test	and	see	if	it	actually	increases	volume	to	offset	for	the
price	difference	or	whatever,	but	use	that	one	with	caution.

If	customers	catch	wind	that	other	people	are	getting	better	prices	than	they	are	for	no	good
reason,	they're	not	going	to	be	very	happy	with	you.	Keep	in	mind,	doing	pricing	experiments
can	have	a	negative	backlash	and	you	don't	want	to	be	in	that	situation.





Measuring	conversion	for	A/B	testing
The	first	thing	you	need	to	figure	out	when	you're	designing	an	experiment	on	a	website	is	what	are	you
trying	to	optimize	for?	What	is	it	that	you	really	want	to	drive	with	this	change?	And	this	isn't	always	a
very	obvious	thing.	Maybe	it's	the	amount	that	people	spend,	the	amount	of	revenue.	Well,	we	talked	about
the	problems	with	variance	in	using	amount	spent,	but	if	you	have	enough	data,	you	can	still,	reach
convergence	on	that	metric	a	lot	of	times.

However,	maybe	that's	not	what	you	actually	want	to	optimize	for.	Maybe	you're	actually	selling	some
items	at	a	loss	intentionally	just	to	capture	market	share.	There's	more	complexity	that	goes	into	your
pricing	strategy	than	just	top-line	revenue.

Maybe	what	you	really	want	to	measure	is	profit,	and	that	can	be	a	very	tricky	thing	to	measure,	because	a
lot	of	things	cut	into	how	much	money	a	given	product	might	make	and	those	things	might	not	always	be
obvious.	And	again,	if	you	have	loss	leaders,	this	experiment	will	discount	the	effect	that	those	are
supposed	to	have.	Maybe	you	just	care	about	driving	ad	clicks	on	your	website,	or	order	quantities	to
reduce	variance,	maybe	people	are	okay	with	that.

The	bottom	line	is	that	you	have	to	talk	to	the	business	owners	of	the	area	that's	being
tested	and	figure	out	what	it	is	they're	trying	to	optimize	for.	What	are	they	being
measured	on?	What	is	their	success	measured	on?	What	are	their	key	performance
indicators	or	whatever	the	NBAs	want	to	call	it?	And	make	sure	that	we're	measuring	the
thing	that	it	matters	to	them.

You	can	measure	more	than	one	thing	at	once	too,	you	don't	have	to	pick	one,	you	can	actually	report	on
the	effect	of	many	different	things:

Revenue
Profit
Clicks
Ad	views

If	these	things	are	all	moving	in	the	right	direction	together,	that's	a	very	strong	sign	that	this	change	had	a
positive	impact	in	more	ways	than	one.	So,	why	limit	yourself	to	one	metric?	Just	make	sure	you	know
which	one	matters	the	most	in	what's	going	to	be	your	criteria	for	success	of	this	experiment	ahead	of
time.





How	to	attribute	conversions
Another	thing	to	watch	out	for	is	attributing	conversions	to	a	change	downstream.	If	the	action	you're
trying	to	drive	doesn't	happen	immediately	upon	the	user	experiencing	the	thing	that	you're	testing,	things
get	a	little	bit	dodgy.

Let's	say	I	change	the	color	of	a	button	on	page	A,	the	user	then	goes	to	page	B	and	does	something	else,
and	ultimately	buys	something	from	page	C.

Well,	who	gets	credit	for	that	purchase?	Is	it	page	A,	or	page	B,	or	something	in-between?	Do	I	discount
the	credit	for	that	conversion	depending	on	how	many	clicks	that	person	took	to	get	to	the	conversion
action?	Do	I	just	discard	any	conversion	action	that	doesn't	happen	immediately	after	seeing	that	change?
These	are	complicated	things	and	it's	very	easy	to	produce	misleading	results	by	fudging	how	you	account
for	these	different	distances	between	the	conversion	and	the	change	that	you're	measuring.





Variance	is	your	enemy
Another	thing	that	you	need	to	really	internalize	is	that	variance	is	your	enemy	when	you're	running	an	A/B
test.

A	very	common	mistake	people	make	who	don't	know	what	they're	doing	with	data	science	is	that	they
will	put	up	a	test	on	a	web	page,	blue	button	versus	orange	button,	whatever	it	is,	run	it	for	a	week,	and
take	the	mean	amount	spent	from	each	of	those	groups.	They	then	say	"oh	look!	The	people	with	the	blue
button	on	average	spent	a	dollar	more	than	the	people	with	the	orange	button;	blue	is	awesome,	I	love
blue,	I'm	going	to	put	blue	all	over	the	website	now!"

But,	in	fact,	all	they	might	have	been	seeing	was	just	a	random	variation	in	purchases.	They	didn't	have	a
big	enough	sample	because	people	don't	tend	to	purchase	a	lot.	You	get	a	lot	of	views	but	you	probably
don't	have	a	lot	of	purchases	on	your	website	in	comparison,	and	it's	probably	a	lot	of	variance	in	those
purchase	amounts	because	different	products	cost	different	amounts.

So,	you	could	very	easily	end	up	making	the	wrong	decision	that	ends	up	costing	your	company	money	in
the	long	run,	instead	of	earning	your	company	money	if	you	don't	understand	the	effect	of	variance	on	these
results.	We'll	talk	about	some	principal	ways	of	measuring	and	accounting	for	that	later	in	the	chapter.

You	need	to	make	sure	that	your	business	owners	understand	that	this	is	an	important
effect	that	you	need	to	quantify	and	understand	before	making	business	decisions
following	an	A/B	test	or	any	experiment	that	you	run	on	the	web.

Now,	sometimes	you	need	to	choose	a	conversion	metric	that	has	less	variance.	It	could	be	that	the
numbers	on	your	website	just	mean	that	you	would	have	to	run	an	experiment	for	years	in	order	to	get	a
significant	result	based	on	something	like	revenue	or	amount	spent.

Sometimes	if	you're	looking	at	more	than	one	metric,	such	as	order	amount	or	order	quantity,	that	has	less
variance	associated	with	it,	you	might	see	a	signal	on	order	quantity	before	you	see	a	signal	on	revenue,
for	example.	At	the	end	of	the	day,	it	ends	up	being	a	judgment	call.	If	you	see	a	significant	lift	in	order
quantities	and	maybe	a	not-so-significant	lift	in	revenue,	then	you	have	to	say	"well,	I	think	there	might	be
something	real	and	beneficial	going	on	here."

However,	the	only	thing	that	statistics	and	data	size	can	tell	you,	are	probabilities	that	an	effect	is	real.	It's
up	to	you	to	decide	whether	or	not	it's	real	at	the	end	of	the	day.	So,	let's	talk	about	how	to	do	this	in	more
detail.

The	key	takeaway	here	is,	just	looking	at	the	differences	in	means	isn't	enough.	When	you're	trying	to
evaluate	the	results	of	an	experiment,	you	need	to	take	the	variance	into	account	as	well.





T-test	and	p-value
How	do	you	know	if	a	change	resulting	from	an	A/B	test	is	actually	a	real	result	of	what	you	changed,	or
if	it's	just	random	variation?	Well,	there	are	a	couple	of	statistical	tools	at	our	disposal	called	the	t-test	or
t-statistic,	and	the	p-value.	Let's	learn	more	about	what	those	are	and	how	they	can	help	you	determine
whether	an	experiment	is	good	or	not.

The	aim	is	to	figure	out	if	a	result	is	real	or	not.	Was	this	just	a	result	of	random	variance	that's	inherent	in
the	data	itself,	or	are	we	seeing	an	actual,	statistically	significant	change	in	behavior	between	our	control
group	and	our	test	group?	T-tests	and	p-values	are	a	way	to	compute	that.

Remember,	statistically	significant	doesn't	really	have	a	specific	meaning.	At	the	end	of
the	day	it	has	to	be	a	judgment	call.	You	have	to	pick	a	probability	value	that	you're	going
to	accept	of	a	result	being	real	or	not.	But	there's	always	going	to	be	a	chance	that	it's
still	a	result	of	random	variation,	and	you	have	to	make	sure	your	stakeholders
understand	that.





The	t-statistic	or	t-test
Let's	start	with	the	t-statistic,	also	known	as	a	t-test.	It	is	basically	a	measure	of	the	difference	in
behavior	between	these	two	sets,	between	your	control	and	treatment	group,	expressed	in	units	of
standard	error.	It	is	based	on	standard	error,	which	accounts	for	the	variance	inherent	in	the	data	itself,	so
by	normalizing	everything	by	that	standard	error,	we	get	some	measure	of	the	change	in	behavior	between
these	two	groups	that	takes	that	variance	into	account.

The	way	to	interpret	a	t-statistic	is	that	a	high	t-value	means	there's	probably	a	real	difference	between
these	two	sets,	whereas	a	low	t-value	means	not	so	much	difference.	You	have	to	decide	what's	a
threshold	that	you're	willing	to	accept?	The	sign	of	the	t-statistic	will	tell	you	if	it's	a	positive	or	negative
change.

If	you're	comparing	your	control	to	your	treatment	group	and	you	end	up	with	a	negative	t-statistic,	that
implies	that	this	is	a	bad	change.	You	ultimate	want	the	absolute	value	of	that	t-statistic	to	be	large.	How
large	a	value	of	t-statistic	is	considered	large?	Well,	that's	debatable.	We'll	look	at	some	examples
shortly.

Now,	this	does	assume	that	you	have	a	normal	distribution	of	behavior,	and	when	we're	talking	about
things	like	the	amount	people	spend	on	a	website,	that's	usually	a	decent	assumption.	There	does	tend	to
be	a	normal	distribution	of	how	much	people	spend.

However,	there	are	more	refined	versions	of	t-statistics	that	you	might	want	to	look	at	for	other	specific
situations.	For	example,	there's	something	called	Fisher's	exact	test	for	when	you're	talking	about	click
through	rates,	the	E-test	when	you're	talking	about	transactions	per	user,	like	how	many	web	pages	do
they	see,	and	the	chi-squared	test,	which	is	often	relevant	for	when	you're	looking	at	order	quantities.
Sometimes	you'll	want	to	look	at	all	of	these	statistics	for	a	given	experiment,	and	choose	the	one	that
actually	fits	what	you're	trying	to	do	the	best.





The	p-value
Now,	it's	a	lot	easier	to	talk	about	p-values	than	t-statistics	because	you	don't	have	to	think	about,	how
many	standard	deviations	are	we	talking	about?	What	does	the	actual	value	mean?	The	p-value	is	a	little
bit	easier	for	people	to	understand,	which	makes	it	a	better	tool	for	you	to	communicate	the	results	of	an
experiment	to	the	stakeholders	in	your	business.

The	p-value	is	basically	the	probability	that	this	experiment	satisfies	the	null	hypothesis,	that	is,	the
probability	that	there	is	no	real	difference	between	the	control	and	the	treatment's	behavior.	A	low	p-
value	means	there's	a	low	probability	of	it	having	no	effect,	kind	of	a	double	negative	going	on	there,	so
it's	a	little	bit	counter	intuitive,	but	at	the	end	of	the	day	you	just	have	to	understand	that	a	low	p-value
means	that	there's	a	high	probability	that	your	change	had	a	real	effect.

What	you	want	to	see	are	a	high	t-statistic	and	a	low	p-value,	and	that	will	imply	a	significant	result.
Now,	before	you	start	your	experiment,	you	need	to	decide	what	your	threshold	for	success	is	going	to	be,
and	that	means	deciding	the	threshold	with	the	people	in	charge	of	the	business.

So,	what	p-value	are	you	willing	to	accept	as	a	measure	of	success?	Is	it	1	percent?	Is	it	5	percent?	And
again,	this	is	basically	the	likelihood	that	there	is	no	real	effect,	that	it's	just	a	result	of	random	variance.	It
is	just	a	judgment	call	at	the	end	of	the	day.	A	lot	of	times	people	use	1	percent,	sometimes	they	use	5
percent	if	they're	feeling	a	little	bit	riskier,	but	there's	always	going	to	be	that	chance	that	your	result	was
just	spurious,	random	data	that	came	in.

However,	you	can	choose	the	probability	that	you're	willing	to	accept	as	being	likely	enough	that	this	is	a
real	effect,	that's	worth	rolling	out	into	production.

When	your	experiment	is	over,	and	we'll	talk	about	when	you	declare	an	experiment	to	be	over	later,	you
want	to	measure	your	p-value.	If	it's	less	than	the	threshold	you	decided	upon,	then	you	can	reject	the	null
hypothesis	and	you	can	say	"well,	there's	a	high	likelihood	that	this	change	produced	a	real	positive	or
negative	result."

If	it	is	a	positive	result	then	you	can	roll	that	change	out	to	the	entire	site	and	it	is	no	longer	an	experiment,
it	is	part	of	your	website	that	will	hopefully	make	you	more	and	more	money	as	time	goes	on,	and	if	it's	a
negative	result,	you	want	to	get	rid	of	it	before	it	costs	you	any	more	money.

Remember,	there	is	a	real	cost	to	running	an	A/B	test	when	your	experiment	has	a
negative	result.	So,	you	don't	want	to	run	it	for	too	long	because	there's	a	chance	you
could	be	losing	money.

This	is	why	you	want	to	monitor	the	results	of	an	experiment	on	a	daily	basis,	so	if	there	are	early
indications	that	the	change	is	making	a	horrible	impact	to	the	website,	maybe	there's	a	bug	in	it	or
something	that's	horrible,	you	can	pull	the	plug	on	it	prematurely	if	necessary,	and	limit	the	damage.

Let's	go	to	an	actual	example	and	see	how	you	might	measure	t-statistics	and	p-values	using	Python.





Measuring	t-statistics	and	p-values	using	Python
Let's	fabricate	some	experimental	data	and	use	the	t-statistic	and	p-value	to	determine	whether	a	given
experimental	result	is	a	real	effect	or	not.	We're	going	to	actually	fabricate	some	fake	experimental	data
and	run	t-statistics	and	p-values	on	them,	and	see	how	it	works	and	how	to	compute	it	in	Python.

	





Running	A/B	test	on	some	experimental	data
Let's	imagine	that	we're	running	an	A/B	test	on	a	website	and	we	have	randomly	assigned	our	users	into
two	groups,	group	A	and	group	B.	The	A	group	is	going	to	be	our	test	subjects,	our	treatment	group,	and
group	B	will	be	our	control,	basically	the	way	the	website	used	to	be.	We'll	set	this	up	with	the	following
code:

import	numpy	as	np	

from	scipy	import	stats	

	

A	=	np.random.normal(25.0,	5.0,	10000)	

B	=	np.random.normal(26.0,	5.0,	10000)	

	

stats.ttest_ind(A,	B)	

In	this	code	example,	our	treatment	group	(A)	is	going	to	have	a	randomly	distributed	purchase	behavior
where	they	spend,	on	average,	$25	per	transaction,	with	a	standard	deviation	of	five	and	ten	thousand
samples,	whereas	the	old	website	used	to	have	a	mean	of	$26	per	transaction	with	the	same	standard
deviation	and	sample	size.	We're	basically	looking	at	an	experiment	that	had	a	negative	result.	All	you
have	to	do	to	figure	out	the	t-statistic	and	the	p-value	is	use	this	handy	stats.ttest_ind	method	from	scipy.
What	you	do	is,	you	pass	it	in	your	treatment	group	and	your	control	group,	and	out	comes	your	t-statistic
as	shown	in	the	output	here:

In	this	case,	we	have	a	t-statistic	of	-14.	The	negative	indicates	that	it	is	a	negative	change,	this	was	a	bad
thing.	And	the	p-value	is	very,	very	small.	So,	that	implies	that	there	is	an	extremely	low	probability	that
this	change	is	just	a	result	of	random	chance.

Remember	that	in	order	to	declare	significance,	we	need	to	see	a	high	t-value	t-statistic,
and	a	low	p-value.

That's	exactly	what	we're	seeing	here,	we're	seeing	-14,	which	is	a	very	high	absolute	value	of	the	t-
statistic,	negative	indicating	that	it's	a	bad	thing,	and	an	extremely	low	P-value,	telling	us	that	there's
virtually	no	chance	that	this	is	just	a	result	of	random	variation.

If	you	saw	these	results	in	the	real	world,	you	would	pull	the	plug	on	this	experiment	as	soon	as	you
could.





When	there's	no	real	difference	between	the	two
groups
Just	as	a	sanity	check,	let's	go	ahead	and	change	things	so	that	there's	no	real	difference	between	these	two
groups.	So,	I'm	going	to	change	group	B,	the	control	group	in	this	case,	to	be	the	same	as	the	treatment,
where	the	mean	is	25,	the	standard	deviation	is	unchanged,	and	the	sample	size	is	unchanged	as	shown
here:

B	=	np.random.normal(25.0,	5.0,	10000)	

	

stats.ttest_ind(A,	B)	

If	we	go	ahead	and	run	this,	you	can	see	our	t-test	ends	up	being	below	one	now:

Remember	this	is	in	terms	of	standard	deviation.	So	this	implies	that	there's	probably	not	a	real	change
there	unless	we	have	a	much	higher	p-value	as	well,	over	30	percent.

Now,	these	are	still	relatively	high	numbers.	You	can	see	that	random	variation	can	be	kind	of	an
insidious	thing.	This	is	why	you	need	to	decide	ahead	of	time	what	would	be	an	acceptable	limit	for	p-
value.

You	know,	you	could	look	at	this	after	the	fact	and	say,	"30	percent	odds,	you	know,	that's	not	so	bad,	we
can	live	with	that,"	but,	no.	I	mean,	in	reality	and	practice	you	want	to	see	p-values	that	are	below	5
percent,	ideally	below	1	percent,	and	a	value	of	30	percent	means	it's	actually	not	that	strong	of	a	result.
So,	don't	justify	it	after	the	fact,	go	into	your	experiment	in	knowing	what	your	threshold	is.





Does	the	sample	size	make	a	difference?
Let's	do	some	changes	in	the	sample	size.	We're	creating	these	sets	under	the	same	conditions.	Let's	see	if
we	actually	get	a	difference	in	behavior	by	increasing	the	sample	size.





Sample	size	increased	to	six-digits
So,	we're	going	to	go	from	10000	to	100000	samples	as	shown	here:

A	=	np.random.normal(25.0,	5.0,	100000)	

B	=	np.random.normal(25.0,	5.0,	100000)	

	

stats.ttest_ind(A,	B)	

You	can	see	in	the	following	output	that	actually	the	p-value	got	a	little	bit	lower	and	the	t-test	a	little	bit
larger,	but	it's	still	not	enough	to	declare	a	real	difference.	It's	actually	going	in	the	direction	you	wouldn't
expect	it	to	go?	Kind	of	interesting!

But	these	are	still	high	values.	Again,	it's	just	the	effect	of	random	variance,	and	it	can	have	more	of	an
effect	than	you	realize.	Especially	on	a	website	when	you're	talking	about	order	amounts.





Sample	size	increased	seven-digits
Let's	actually	increase	the	sample	size	to	1000000,	as	shown	here:	A	=	np.random.normal(25.0,	5.0,
1000000)	B	=	np.random.normal(25.0,	5.0,	1000000)	stats.ttest_ind(A,	B)

Here	is	the	result:

What	does	that	do?	Well,	now,	we're	back	under	1	for	the	t-statistic,	and	our	value's	around	35	percent.

We're	seeing	these	kind	of	fluctuations	a	little	bit	in	either	direction	as	we	increase	the	sample	size.	This
means	that	going	from	10,000	samples	to	100,000	to	1,000,000	isn't	going	to	change	your	result	at	the	end
of	the	day.	And	running	experiments	like	this	is	a	good	way	to	get	a	good	gut	feel	as	to	how	long	you	might
need	to	run	an	experiment	for.	How	many	samples	does	it	actually	take	to	get	a	significant	result?	And	if
you	know	something	about	the	distribution	of	your	data	ahead	of	time,	you	can	actually	run	these	sorts	of
models.





A/A	testing
If	we	were	to	compare	the	set	to	itself,	this	is	called	an	A/A	test	as	shown	in	the	following	code	example:

stats.ttest_ind(A,	A)	

We	can	see	in	the	following	output,	a	t-statistic	of	0	and	a	p-value	of	1.0	because	there	is	in	fact	no
difference	whatsoever	between	these	sets.

Now,	if	you	were	to	run	that	using	real	website	data	where	you	were	looking	at	the	same	exact	people	and
you	saw	a	different	value,	that	indicates	there's	a	problem	in	the	system	itself	that	runs	your	testing.	At	the
end	of	the	day,	like	I	said,	it's	all	a	judgment	call.

Go	ahead	and	play	with	this,	see	what	the	effect	of	different	standard	deviations	has	on	the	initial	datasets,
or	differences	in	means,	and	different	sample	sizes.	I	just	want	you	to	dive	in,	play	around	with	these
different	datasets	and	actually	run	them,	and	see	what	the	effect	is	on	the	t-statistic	and	the	p-value.	And
hopefully	that	will	give	you	a	more	gut	feel	of	how	to	interpret	these	results.

Again,	the	important	thing	to	understand	is	that	you're	looking	for	a	large	t-statistic	and
a	small	p-value.	P-value	is	probably	going	to	be	what	you	want	to	communicate	to	the
business.	And	remember,	lower	is	better	for	p-value,	you	want	to	see	that	in	the	single
digits,	ideally	below	1	percent	before	you	declare	victory.

We'll	talk	about	A/B	tests	some	more	in	the	remainder	of	the	chapter.	SciPy	makes	it	really	easy	to
compute	t-statistics	and	p-values	for	a	given	set	of	data,	so	you	can	very	easily	compare	the	behavior
between	your	control	and	treatment	groups,	and	measure	what	the	probability	is	of	that	effect	being	real	or
just	a	result	of	random	variation.	Make	sure	you	are	focusing	on	those	metrics	and	you	are	measuring	the
conversion	metric	that	you	care	about	when	you're	doing	those	comparisons.





Determining	how	long	to	run	an	experiment	for
How	long	do	you	run	an	experiment	for?	How	long	does	it	take	to	actually	get	a	result?	At	what	point	do
you	give	up?	Let's	talk	about	that	in	more	detail.

If	someone	in	your	company	has	developed	a	new	experiment,	a	new	change	that	they	want	to	test,	then
they	have	a	vested	interest	in	seeing	that	succeed.	They	put	a	lot	of	work	and	time	into	it,	and	they	want	it
to	be	successful.	Maybe	you've	gone	weeks	with	the	testing	and	you	still	haven't	reached	a	significant
outcome	on	this	experiment,	positive	or	negative.	You	know	that	they're	going	to	want	to	keep	running	it
pretty	much	indefinitely	in	the	hope	that	it	will	eventually	show	a	positive	result.	It's	up	to	you	to	draw	the
line	on	how	long	you're	willing	to	run	this	experiment	for.

How	do	I	know	when	I'm	done	running	an	A/B	test?	I	mean,	it's	not	always	straightforward	to	predict	how
long	it	will	take	before	you	can	achieve	a	significant	result,	but	obviously	if	you	have	achieved	a
significant	result,	if	your	p-value	has	gone	below	1	percent	or	5	percent	or	whatever	threshold	you've
chosen,	and	you're	done.

At	that	point	you	can	pull	the	plug	on	the	experiment	and	either	roll	out	the	change	more	widely	or	remove
it	because	it	was	actually	having	a	negative	effect.	You	can	always	tell	people	to	go	back	and	try	again,
use	what	they	learned	from	the	experiment	to	maybe	try	it	again	with	some	changes	and	soften	the	blow	a
little	bit.

The	other	thing	that	might	happen	is	it's	just	not	converging	at	all.	If	you're	not	seeing	any	trends	over	time
in	the	p-value,	it's	probably	a	good	sign	that	you're	not	going	to	see	this	converge	anytime	soon.	It's	just
not	going	to	have	enough	of	an	impact	on	behavior	to	even	be	measurable,	no	matter	how	long	you	run	it.

In	those	situations,	what	you	want	to	do	every	day	is	plot	on	a	graph	for	a	given	experiment	the	p-value,
the	t-statistic,	whatever	you're	using	to	measure	the	success	of	this	experiment,	and	if	you're	seeing
something	that	looks	promising,	you	will	see	that	p-value	start	to	come	down	over	time.	So,	the	more	data
it	gets,	the	more	significant	your	results	should	be	getting.

Now,	if	you	instead	see	a	flat	line	or	a	line	that's	all	over	the	place,	that	kind	of	tells	you	that	that	p-
value's	not	going	anywhere,	and	it	doesn't	matter	how	long	you	run	this	experiment,	it's	just	not	going	to
happen.	You	need	to	agree	up	front	that	in	the	case	where	you're	not	seeing	any	trends	in	p-values,	what's
the	longest	you're	willing	to	run	this	experiment	for?	Is	it	two	weeks?	Is	it	a	month?

Another	thing	to	keep	in	mind	is	that	having	more	than	one	experiment	running	on	the
site	at	once	can	conflate	your	results.

Time	spent	on	experiments	is	a	valuable	commodity,	you	can't	make	more	time	in	the	world.	You	can	only
really	run	as	many	experiments	as	you	have	time	to	run	them	in	a	given	year.	So,	if	you	spend	too	much
time	running	one	experiment	that	really	has	no	chance	of	converging	on	a	result,	that's	an	opportunity
you've	missed	to	run	another	potentially	more	valuable	experiment	during	that	time	that	you	are	wasting	on
this	other	one.



It's	important	to	draw	the	line	on	experiment	links,	because	time	is	a	very	precious	commodity	when
you're	running	A/B	tests	on	a	website,	at	least	as	long	as	you	have	more	ideas	than	you	have	time,	which
hopefully	is	the	case.	Make	sure	you	go	in	with	agreed	upper	bounds	on	how	long	you're	going	to	spend
testing	a	given	experiment,	and	if	you're	not	seeing	trends	in	the	p-value	that	look	encouraging,	it's	time	to
pull	the	plug	at	that	point.





A/B	test	gotchas
An	important	point	I	want	to	make	is	that	the	results	of	an	A/B	test,	even	when	you	measure	them	in	a
principled	manner	using	p-values,	is	not	gospel.	There	are	many	effects	that	can	actually	skew	the	results
of	your	experiment	and	cause	you	to	make	the	wrong	decision.	Let's	go	through	a	few	of	these	and	let	you
know	how	to	watch	out	for	them.	Let's	talk	about	some	gotchas	with	A/B	tests.

It	sounds	really	official	to	say	there's	a	p-value	of	1	percent,	meaning	there's	only	a	1	percent	chance	that
a	given	experiment	was	due	to	spurious	results	or	random	variation,	but	it's	still	not	the	be-all	and	end-all
of	measuring	success	for	an	experiment.	There	are	many	things	that	can	skew	or	conflate	your	results	that
you	need	to	be	aware	of.	So,	even	if	you	see	a	p-value	that	looks	very	encouraging,	your	experiment	could
still	be	lying	to	you,	and	you	need	to	understand	the	things	that	can	make	that	happen	so	you	don't	make	the
wrong	decisions.

Remember,	correlation	does	not	imply	causation.

Even	with	a	well-designed	experiment,	all	you	can	say	is	there	is	some	probability	that	this	effect	was
caused	by	this	change	you	made.

At	the	end	of	the	day,	there's	always	going	to	be	a	chance	that	there	was	no	real	effect,	or	you	might	even
be	measuring	the	wrong	effect.	It	could	still	be	random	chance,	there	could	be	something	else	going	on,
it's	your	duty	to	make	sure	the	business	owners	understand	that	these	experimental	results	need	to	be
interpreted,	they	need	to	be	one	piece	of	their	decision.

They	can't	be	the	be-all	and	end-all	that	they	base	their	decision	on	because	there	is	room	for	error	in	the
results	and	there	are	things	that	can	skew	those	results.	And	if	there's	some	larger	business	objective	to
this	change,	beyond	just	driving	short-term	revenue,	that	needs	to	be	taken	into	account	as	well.





Novelty	effects
One	problem	is	novelty	effects.	One	major	Achilles	heel	of	an	A/B	test	is	the	short	time	frame	over	which
they	tend	to	be	run,	and	this	causes	a	couple	of	problems.	First	of	all,	there	might	be	longer-term	effects	to
the	change,	and	you're	not	going	to	measure	those,	but	also,	there	is	a	certain	effect	to	just	something	being
different	on	the	website.

For	instance,	maybe	your	customers	are	used	to	seeing	the	orange	buttons	on	the	website	all	the	time,	and
if	a	blue	button	comes	up	and	it	catches	their	attention	just	because	it's	different.	However,	as	new
customers	come	in	who	have	never	seen	your	website	before,	they	don't	notice	that	as	being	different,	and
over	time	even	your	old	customers	get	used	to	the	new	blue	button.	It	could	very	well	be	that	if	you	were
to	make	this	same	test	a	year	later,	there	would	be	no	difference.	Or	maybe	they'd	be	the	other	way
around.

I	could	very	easily	see	a	situation	where	you	test	orange	button	versus	blue	button,	and	in	the	first	two
weeks	the	blue	button	wins.	People	buy	more	because	they	are	more	attracted	to	it,	because	it's	different.
But	a	year	goes	by,	I	could	probably	run	another	web	lab	that	puts	that	blue	button	against	an	orange	button
and	the	orange	button	would	win,	again,	simply	because	the	orange	button	is	different,	and	it's	new	and
catches	people's	attention	just	for	that	reason	alone.

For	that	reason,	if	you	do	have	a	change	that	is	somewhat	controversial,	it's	a	good	idea	to	rerun	that
experiment	later	on	and	see	if	you	can	actually	replicate	its	results.	That's	really	the	only	way	I	know	of	to
account	for	novelty	effects;	actually	measure	it	again	when	it's	no	longer	novel,	when	it's	no	longer	just	a
change	that	might	capture	people's	attention	simply	because	it's	different.

And	this,	I	really	can't	understate	the	importance	of	understanding	this.	This	can	really	skew	a	lot	of
results,	it	biases	you	to	attributing	positive	changes	to	things	that	don't	really	deserve	it.	Being	different	in
and	of	itself	is	not	a	virtue;	at	least	not	in	this	context.





Seasonal	effects
If	you're	running	an	experiment	over	Christmas,	people	don't	tend	to	behave	the	same	during	Christmas	as
they	do	the	rest	of	the	year.	They	definitely	spend	their	money	differently	during	that	season,	they're
spending	more	time	with	their	families	at	home,	and	they	might	be	a	little	bit,	kind	of	checked	out	of	work,
so	people	have	a	different	frame	of	mind.

It	might	even	be	involved	with	the	weather,	during	the	summer	people	behave	differently	because	it's	hot
out	they're	feeling	kind	of	lazy,	they're	on	vacation	more	often.	Maybe	if	you	happen	to	do	your	experiment
during	the	time	of	a	terrible	storm	in	a	highly	populated	area	that	could	skew	your	results	as	well.

Again,	just	be	cognizant	of	potential	seasonal	effects,	holidays	are	a	big	one	to	be	aware	of,	and	always
take	your	experience	with	a	grain	of	salt	if	they're	run	during	a	period	of	time	that's	known	to	have
seasonality.

You	can	determine	this	quantitatively	by	actually	looking	at	the	metric	you're	trying	to	measure	as	a
success	metric,	be	it,	whatever	you're	calling	your	conversion	metric,	and	look	at	its	behavior	over	the
same	time	period	last	year.	Are	there	seasonal	fluctuations	that	you	see	every	year?	And	if	so,	you	want	to
try	to	avoid	running	your	experiment	during	one	of	those	peaks	or	valleys.





Selection	bias
Another	potential	issue	that	can	skew	your	results	is	selection	bias.	It's	very	important	that	customers	are
randomly	assigned	to	either	your	control	or	your	treatment	groups,	your	A	or	B	group.

However,	there	are	subtle	ways	in	which	that	random	assignment	might	not	be	random	after	all.	For
example,	let's	say	that	you're	hashing	your	customer	IDs	to	place	them	into	one	bucket	or	the	other.	Maybe
there's	some	subtle	bias	between	how	that	hash	function	affects	people	with	lower	customer	IDs	versus
higher	customer	IDs.	This	might	have	the	effect	of	putting	all	of	your	longtime,	more	loyal	customers	into
the	control	group,	and	your	newer	customers	who	don't	know	you	that	well	into	your	treatment	group.

What	you	end	up	measuring	then	is	just	a	difference	in	behavior	between	old	customers	and	new
customers	as	a	result.	It's	very	important	to	audit	your	systems	to	make	sure	there	is	no	selection	bias	in
the	actual	assignment	of	people	to	the	control	or	treatment	group.

You	also	need	to	make	sure	that	assignment	is	sticky.	If	you're	measuring	the	effect	of	a	change	over	an
entire	session,	you	want	to	measure	if	they	saw	a	change	on	page	A	but,	over	on	page	C	they	actually	did	a
conversion,	you	have	to	make	sure	they're	not	switching	groups	in	between	those	clicks.	So,	you	need	to
make	sure	that	within	a	given	session,	people	remain	in	the	same	group,	and	how	to	define	a	session	can
become	kind	of	nebulous	as	well.

Now,	these	are	all	issues	that	using	an	established	off-the-shelf	framework	like	Google	Experiments	or
Optimizely	or	one	of	those	guys	can	help	with	so	that	you're	not	reinventing	the	wheel	on	all	these
problems.	If	your	company	does	have	a	homegrown,	in-house	solution	because	they're	not	comfortable
with	sharing	that	data	with	outside	companies,	then	it's	worth	auditing	whether	there	is	selection	bias	or
not.





Auditing	selection	bias	issues
One	way	for	auditing	selection	bias	issues	is	running	what's	called	an	A/A	test,	like	we	saw	earlier.	So,	if
you	actually	run	an	experiment	where	there	is	no	difference	between	the	treatment	and	control,	you
shouldn't	see	a	difference	in	the	end	result.	There	should	not	be	any	sort	of	change	in	behavior	when
you're	comparing	those	two	things.

An	A/A	test	can	be	a	good	way	of	testing	your	A/B	framework	itself	and	making	sure	there's	no	inherent
bias	or	other	problems,	for	example,	session	leakage	and	whatnot,	that	you	need	to	address.

	





Data	pollution
Another	big	problem	is	data	pollution.	We	talked	at	length	about	the	importance	of	cleaning	your	input
data,	and	it's	especially	important	in	the	context	of	an	A/B	test.	What	would	happen	if	you	have	a	robot,	a
malicious	crawler	that's	crawling	through	your	website	all	the	time,	doing	an	unnatural	amount	of
transactions?	What	if	that	robot	ends	up	getting	either	assigned	to	the	treatment	or	the	control?

That	one	robot	could	skew	the	results	of	your	experiment.	It's	very	important	to	study	the	input	going	into
your	experiment	and	look	for	outliers,	then	analyze	what	those	outliers	are,	and	whether	they	should	they
be	excluded.	Are	you	actually	letting	some	robots	leak	into	your	measurements	and	are	they	skewing	the
results	of	your	experiment?	This	is	a	very,	very	common	problem,	and	something	you	need	to	be	cognizant
of.

There	are	malicious	robots	out	there,	there	are	people	trying	to	hack	into	your	website,	there	are	benign
scrapers	just	trying	to	crawl	your	website	for	search	engines	or	whatnot.	There	are	all	sorts	of	weird
behaviors	going	on	with	a	website,	and	you	need	to	filter	out	those	and	get	at	the	people	who	are	really
your	customers	and	not	these	automated	scripts.	That	can	actually	be	a	very	challenging	problem.	Yet
another	reason	to	use	off-the-shelf	frameworks	like	Google	Analytics,	if	you	can.





Attribution	errors
We	talked	briefly	about	attribution	errors	earlier.	This	is	if	you	are	actually	using	downstream	behavior
from	a	change,	and	that	gets	into	a	gray	area.

You	need	to	understand	how	you're	actually	counting	those	conversions	as	a	function	of	distance	from	the
thing	that	you	changed	and	agree	with	your	business	stakeholders	upfront	as	to	how	you're	going	to
measure	those	effects.	You	also	need	to	be	aware	of	if	you're	running	multiple	experiments	at	once;	will
they	conflict	with	one	another?	Is	there	a	page	flow	where	someone	might	actually	encounter	two	different
experiments	within	the	same	session?

If	so,	that's	going	to	be	a	problem	and	you	have	to	apply	your	judgment	as	to	whether	these	changes
actually	could	interfere	with	each	other	in	some	meaningful	way	and	affect	the	customers'	behavior	in
some	meaningful	way.	Again,	you	need	to	take	these	results	with	a	grain	of	salt.	There	are	a	lot	of	things
that	can	skew	results	and	you	need	to	be	aware	of	them.	Just	be	aware	of	them	and	make	sure	your
business	owners	are	also	aware	of	the	limitations	of	A/B	tests	and	all	will	be	okay.

Also,	if	you're	not	in	a	position	where	you	can	actually	devote	a	very	long	amount	of	time	to	an
experiment,	you	need	to	take	those	results	with	a	grain	of	salt	and	ideally	retest	them	later	on	during	a
different	time	period.





Summary
In	this	chapter,	we	talked	about	what	A/B	tests	are	and	what	are	the	challenges	surrounding	them.	We	went
into	some	examples	of	how	you	actually	measure	the	effects	of	variance	using	the	t-statistic	and	p-value
metrics,	and	we	got	into	coding	and	measuring	t-tests	using	Python.	We	then	went	on	to	discuss	the	short-
term	nature	of	an	A/B	test	and	its	limitations,	such	as	novelty	effects	or	seasonal	effects.

That	also	wraps	up	our	time	in	this	book.	Congratulations	for	making	it	this	far,	that's	a	serious
achievement	and	you	should	be	proud	of	yourself.	We've	covered	a	lot	of	material	here	and	I	hope	that	you
at	least	understand	the	concepts	and	have	a	little	bit	of	hands-on	experience	with	most	of	the	techniques
that	are	used	in	data	science	today.	It's	a	very	broad	field,	so	we've	touched	on	a	little	bit	of	everything
there.	So,	you	know,	congratulations	again.

If	you	want	to	further	your	career	in	this	field,	what	I'd	really	encourage	you	to	do	is	talk	to	your	boss.	If
you	work	at	a	company	that	has	access	to	some	interesting	datasets	of	its	own,	see	if	you	can	play	around
with	them.	Obviously,	you	want	to	talk	to	your	boss	first	before	you	use	any	data	owned	by	your	company,
because	there's	probably	going	to	be	some	privacy	restrictions	surrounding	it.	You	want	to	make	sure	that
you're	not	violating	the	privacy	of	your	company's	customers,	and	that	might	mean	that	you	might	only	be
able	to	use	that	data	or	look	at	it	within	a	controlled	environment	at	your	workplace.	So,	be	careful	when
you're	doing	that.

If	you	can	get	permission	to	actually	stay	late	at	work	a	few	days	a	week	and,	you	know,	mess	around	with
some	of	these	datasets	and	see	what	you	can	do	with	it,	not	only	does	show	that	you	have	the	initiative	to
make	yourself	a	better	employee,	you	might	actually	discover	something	that	might	be	valuable	to	your
company,	and	that	could	just	make	you	look	even	better,	and	actually	lead	to	an	internal	transfer	perhaps,
into	a	field	more	directly	related	to	where	you	want	to	take	your	career.

So,	if	you	want	some	career	advice	from	me,	a	common	question	I	get	is,	"hey,	I'm	an	engineer,	I	want	to
get	more	into	data	science,	how	do	I	do	that?"	The	best	way	to	do	it	is	just	do	it,	you	know,	actually	do
some	side	projects	and	show	that	you	can	do	it	and	demonstrate	some	meaningful	results	from	it.	Show
that	to	your	boss	and	see	where	it	leads	you.	Good	luck.
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